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Q U A N T I F I C A T I O N *  

Exception sentences such as (la) and (lb) pose many challenges for a 
compositional semantic analysis within a general theory of natural lan- 
guage quantification: 

(1)a. Every boy except John came. 
b. No boy except John came. 

In this paPer , I develop a compositional semantic analysis of exception 
constructions within the theory of generalized quantifiers. This analysis 
meets three basic adequacy conditions on a semantic theory of those 
constructions: 

1. It explains the basic semantic properties of exception constructions; 
in particular, it explains the restriction on the NPs with which an 
exception phrase may associate to (basically) those denoting univer- 
sal and negative universal quantifiers. 

2. It is general enough to apply to the full range of NPs with which an 
exception phrase may associate. 

3. It accounts for the full range of complements that exception ex- 
pressions such as except or but may take; in particular, it accounts 
for quantified and disjoined complements. 

Besides providing a semantics of exception constructions, this paper 
presents results on natural language quantification that are of independent 
interest. Most importantly, it provides new evidence for polyadic quantifi- 
cation in natural language. In particular, it shows that several NPs in a 
clause may together denote a polyadic quantifier to which an exception 
phrase may then apply. 

This paper is divided into two parts. The first part contains the semantic 

* The material discussed in this paper was in part presented already in a chapter of my 
dissertation (Moltmann 1992a). However, that chapter was rather descriptive in nature and 
no proper semantic analysis was developed. 
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analysis of simple exception sentences (involving only monadic quantifi- 
ers). I will first introduce three basic semantic properties of exception 
constructions and show that prior analyses of exception sentences fail to 
account for some of those properties. I will present my own analysis of 
exception constructions first for the simplest case, in which the comple- 
ment of except or but refers to a specific exception set, and then refine 
the analysis so that it can apply also to quantified NPs as the complement 
of except or but. Finally, I will show how the analysis can apply to certain 
clausal exception constructions. 

The second part of this paper treats exception sentences involving poly- 
adic quantification. I will first present exception constructions in which 
the exception is specified as an n-tuple (or a set of n-tuples) and show how 
the analysis developed in the first part can straightforwardly be extended to 
these constructions. As a second type of exception construction involving 
polyadic quantifiers, I will present sentences in which the constraint on 
the associate of the exception phrase is satisfied not by the NP the excep- 
tion phrase seems to modify, but rather by the larger context in which 
this NP occurs. I then turn to the issue of the syntactic basis of the 
formation of polyadic quantifiers and give a speculative account. Finally, I 
will briefly present some further exception constructions involving polyadic 
quantification. 

P A R T  I. T H E  S E M A N T I C S  OF S I M P L E  E X C E P T I O N  
C O N S T R U C T I O N S  

1. SOME BASIC DISTINCTIONS AND TERMINOLOGY 

In this part, I will restrict myself to exception constructions in which only 
one quantifier occurs or is relevant, as in (la), repeated here as (2): 

(2) Every boy except John came. 

I will call those exception sentences 'simple exception constructions'. 
Let me at the outset introduce some basic distinctions and some termin- 

ology concerning exception constructions. I will use the abbreviation 'EP' 
for 'exception phrase'. Furthermore, I will call the NP or the quantifier 
that an exception phrase syntactically and semantically associates with 
'the associate of the exception phrase', for short 'EP-associate', and the 
complement of the exception expression, i.e. except, but, or except for, 
'the EP-complement'. Thus, in (2) the EP-associate is every boy and the 
EP-complement John. 
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An important distinction that has been made in the literature (cf. Hoek- 
sema 1989, 1991, von Fintel 1993, Reinhart 1991) is between two syntacti- 
cally different types of EPs: connected exception phrases, where the EP is 
adjoined to the NP or has been extraposed from that position, and free 
exception phrases, where, basically, the EP is in adverbial position. EPs 
of the form but NP and except NP, as in (3a), are connected EPs; EPs of 
the form except for NP, as in (3b), are free EPs: 

(3)a. Every man but/except John came. 
b. Except for John, every man came. 

In the following, I will assume that connected and free EPs have essentially 
the same semantics, though they involve different syntactic structures as 
the basis for their interpretation.1 

I will make the following general semantic assumptions. I take deter- 
miners such as the denotation of every to be functions from sets to sets 
of sets (or sets of relations). Generalized quantifiers, the denotations of 
NPs, then are sets of sets (or sets of relations). For example, the deno- 
tation of every boy will be the set of sets which contain the set of boys as 
a subset, the denotation of no boy will be the set of sets containing no 
boy, and the denotation of some boy will be the set of sets containing at 
least one boy. In the semantic analyses that I propose I will give direct 
interpretations of relevant natural language expressions, rather than using 
a logical language as an intermediate language into which natural language 
expressions are translated. I will denote the semantic value of an ex- 
pression such as every boy in a model by '[every boy]' without explicit 
reference to the model, except if such explicit reference is crucial. 

2. B A S I C  S E M A N T I C  P R O P E R T I E S  OF E X C E P T I O N  C O N S T R U C T I O N S  

2.1. The Negative Condition 

The first basic semantic property of exception constructions is that they 
carry what I call the 'negative condition'; that is, simply, the exceptions 
have to be exceptions. More precisely, applying the predicate to the 
exceptions should yield the opposite truth value from applying the predi- 
cate to nonexceptions. In case the associated quantifier is positive, apply- 
ing the predicate to the exceptions should yield a negative truth value; in 

1 See Reinhart (1991) for a proposal of assimilating the syntax of free EPs to the syntax of 
connected EPs. 
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case the quantifier is negative, it should yield a positive truth value. Thus, 
(4a) implies that John did not come and (4b) that John came: 

(4) a. 
b. 

Every boy except John came. 
No boy except John came. 

So the condition is: 

(5) The Negative Condition 
Applying the predicate to the exceptions yields the opposite 
truth value from applying the predicate to nonexceptions. 

The importance of the Negative Condition can be seen from the contrast 
with the expression other than. Other than-phrases also syntactically associ- 
ate with an NP, and they seem to have a similar semantic function as EPs; 
but unlike EPs, they do not carry the Negative Condition: 

(6) John came, and everybody other than John came. 

But there are also expressions that associate with an NP and are not EPs, 
but still impose the Negative Condition, for example but not-phrases as 
in (7): 

(7) Some people, but not John, went to the movie. 

I will come back to the semantics of other than-phrases and but not-phrases 
later. 

2.2. The Condition of Inclusion 

The second basic semantic property of EPs is that the entities that are 
specified as the exceptions must fall under the restriction of the associated 
quantifier. Thus, the sentences in (8) both imply that John is a boy: 

(8) a. 
b. 

Every boy ,except John came. 
No boy except John came. 

I will call this property the 'Condition of Inclusion': 

(9) The Condition of Inclusion 
The exceptions must belong to the restriction of the associated 
quantifier. 

Other than-phrases also impose the Condition of Inclusion, although, 
as we have seen, they do not impose the Negative Condition. (10) implies 
that John is a boy, although it does not imply that John did not come: 
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(10) Every boy other than John came. 

Conversely, but not-phrases impose the Negative Condition, but not the 
Condition of Inclusion. Thus, (11) is fine: 

(11) Every man but not Mary came. 

2.3. The Quanttfier Constraint: First Observations 

The most interesting property of exception phrases is that they impose a 
general condition on the quantifier they associate with. The condition, 
basically, is that the quantifier be either universal or negative universal. 
That is, the quantifier may be every, all or no, but not, for instance, most, 
few, or a cardinal quantifier. This constraint is illustrated in (12): 

(12) Every boy/All boys/No boy/#Most boys/#A lot of boys/ 
#Three boys/#At least three boys/#Few boys but/except John 
came. 

Free EPs impose the same constraint (though speakers initially sometimes 
allow the quantifiers most and few as well, an issue I will disregard): 

(13) Except for John, every boy/all boys/no boy/*a lot of boys/ 
*three boys/(?) most boys/(?) few boys came. 

I will call the restriction of EPs to universal and negative universal 
quantifiers the 'Quantifier Constraint'. (I will later discuss the possibility 
of whether other quantifiers may be allowed as well.) In a first approxi- 
mation, this constraint can be stated as follows: 

(14) The Quantifier Constraint (approximation) 
The NP that an exception phrase associates with must denote 
a universal or negative universal quantifier. 

Is the Quantifier Constraint a semantic or a syntactic constraint? Be- 
cause it mentions semantically defined classes of quantifiers, it appears 
semantic in nature. But let us consider for a moment the possibility that 
it is syntactically conditioned. Imposing the following condition might be 
a way to exclude exception sentences with unacceptable associated NPs 
syntactically: NPs allow for only one expression whose content consists in 
a specification of the cardinality or constitution of the domain associated 
with the NP. This restriction would be a uniqueness condition on a certain 
syntactic function in NPs. Since EPs provide information about the consti- 
tution of a quantification domain, they would, in some way, fulfill this 
function. Therefore, cardinality attributes such as many and three cannot 
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cooccur with an EP. Let me note that an account in this spirit has actually 
been proposed by Carlson (1981) for amount relatives, which impose 
similar restrictions. 2 

However, this syntactic explanation can be shown to be inadequate. In 
its empirical predictions, it is both too strong and too weak. It is too 
strong, for example, by ruling out the acceptable (15), where a universal 
quantifier cooccurs with a cardinality attribute: 3 

(15) all three hundred students/all those many students except John 

The syntactic explanation furthermore is too weak, since even quantifi- 
ers without cardinality specification may disallow EPs, as in (16): 

2 Von Fintel (1993) suggests that the fact that free EPs seem to associate with the quantifiers 
most and few means that free EPs are not subject to the Quantifier Constraint. But free EPs 
still exclude almost all quantifiers that are not universal or negative universal, as seen in (1): 

(1) #Ten boys/More than half of the boys came except for Bill. 

Another apparent counterexample to the Quantifier Constraint are EPs that associate with 
a universal quantifier modified by almost: 

(2) Almost every boy except John came. 

However, it appears that almost here attaches to everybody except John, rather than except 
John attaching to almost every boy. The evidence comes from data with coordination such 
as: 

(3)a. almost [every boy except John and every girl except Mary] 
b. #almost every boy and almost every girl except John 

(3a) with the bracketing given shows that almost may modify an NP with an EP. (3b) 
indicates that exception phrases may not modify NPs with almost. 

Thus, the Quantifier Constraint is satisfied in (2), given the bracketing almost [every boy 
except John]. 

Note, however, that almost itself can be considered an EP, meaning something like 'at 
most ten percent'. Then the problem arises of how the Quantifier Constraint is satisfied in 
(2) by every boy except John and almost, since every boy except John does not denote a 
universal quantifier. However, the condition I will introduce in Section 4 for deriving the 
Quantifier Constraint (the Homogeneity Condition) will be able to account for (2). It only 
has to be assumed that (2) is allowed to be interpreted as something like 'every boy except 
at most ten percent of tl~e boys besides John' (let us say, by local accommodation). For then 
the Homogeneity Condition is satisfied. 
a Universally quantified NPs with certain numeral specifiers are indeed incompatible with 
EPs, though: 

(1)a. #neither/both students except John 
b. #all three students except John 

The badness of (la) and (lb) may be attributed to a pragmatic condition which prohibits 
entities which are explicitly mentioned as verifiers (at least in number) not to also be specified 
as exceptions in one and the same NP. The condition should be such that the larger the 
eardinality, the less an individual entity is considered 'explicitly mentioned'. 



EXCEPTION SENTENCES AND POLYADIC Q U A N T I F I C A T I O N  229 

(16) #not  all students/#the students/#students except John 

The syntactic approach also fails for a more principled reason. Excep- 
tion sentences exhibit an interesting phenomenon which I will come back 
to at various stages in this paper. The phenomenon is that free EPs may 
operate at a level of implications or semantic structuring, a level of seman- 
tic representation at which the meaning expressed by the sentence without 
the EP may be represented by some equivalent content. At that level, the 
EP may apply to a quantifier that is relatively independent of any parti- 
cular expression in the sentence. Since it appears that in such cases the 
quantifier is still subject to the Quantifier Constraint, the constraint cannot 
be a matter of a syntactic co-occurrence restriction (cf. Moltmann 1992a). 
Two relevant examples are given in (17):  4 

(17)a. Except for the door, John painted the house/#part of the house 
red. 

b. The place is deserted/#not crowded except for a cat. 

The EPs in these examples can best be analysed as applying to a quantifier 
which is part of a proposition that is equivalent to what the sentence 
without the EP expresses. The contrast between the first and the second 
sentence in (17a) is then explained as follows. Given the meaning of paint 
and the house, the first example in (17a) can be understood as roughly 
equivalent to the proposition 'John painted every part of the house red'. 
This proposition (at the level of implications) provides a universal quan- 
tifier ranging over the parts of the house, and this is the quantifier to 
which except for the door applies, satisfying the Quantifier Constraint. By 
contrast, with part of the house, an equivalent proposition could only 
provide an existential ranging over the parts of the house, not a universal 
quantifier, hence violating the Quantifier Constraint. A similar explana- 
tion accounts for the contrast between deserted and not crowded in (17b).S 

4 Some languages, for example German and Dutch, cannot use the same exception ex- 
pressions here. In German, bis aufis  much better than ausser 'except (for) in such contexts': 

(1)a. Der Raum ware leer bis auf einen Stuhl/#ausser einem Stuhl. 
'The room was empty except for a chair.' 

b. jeder Mann bis auf Hans/ausser Hans 
'every man except for John. 

5 There are constructions with what I call 'inclusion' and 'exclusion phrases' which seem to 
semantically act like EPs, but fail to impose the Quantifier Constraint. Inclusion and ex- 
clusion phrases as in (1) appear to semantically operate on a generalized quantifier: they 
add or subtract a set to or from each of the elements in a generalized quantifier. 

(1) Every student including John/excluding John came. 

But inclusion and exclusion phrases can associate with quantifiers other than universal and 
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Such examples show that the restriction of EPs to universal (and nega- 
tive universal) quantifiers obtains regardless of whether the EP applies to 
a quantifier denoted by a syntactically present NP or to a quantifier that 
comes about only at the level of implications (or semantic restructuring) 
of what the rest of the sentence means. Hence the condition enforcing 
the restriction to universal and negative universal quantifiers as the associ- 
ates of EPs must be purely semantic in nature. 6 

Clearly, explaining the Quantifier Constraint constitutes an important 
adequacy condition on a semantic theory of exception constructions. The 
restriction to universal or negative universal quantifiers should follow from 
some semantic condition associated with EPs. The challenge that the 
Quantifier Constraint poses is that it is not obvious why it should be 
enforced at all. In this respect, it is useful to note that the semantically 
related constructions with other than and but not do not impose the Quan- 
tifier Constraint: 

(18)a. Some/Three/Most boys other than John came. 
b. Some/Three/Most boys but not John came. 

Thus, even though, like EPs, other than-phrases also impose the Condition 
of Inclusion, and but not-phrases impose the Negative Condition, the 
semantics of these phrases should be different from the semantics of EPs. 
Let me therefore briefly spell out what can be taken to be the meaning 
of other than-phrases and but not-phrases. 

The semantic operation associated with other than-phrases is most plaus- 

negative universal quantifiers, as seen in (2) and (3): 

(2)a. Several students/A lot of students including John came. 
b. Ten students including John came. 

(3)a. Several students/A lot of students excluding John came. 
b. Ten students excluding John came. 

Exclusion phrases often have the same semantic function as EPs. But since they can associate 
with quantifiers other than universal and negative universal quantifiers, they seem to involve 
a rather different semantics. 
6 There are certain constructions that seem to go against the generalization that the constraint 
on the associate of the EP is semantic in nature, namely quantifiers such as zero, between 
ten and ten, or less than one, as in (1): 

(1) #Zero  students/Between ten and ten students/Less than one student except John 
failed the exam. 

As (1) shows, these quantifiers disallow EPs, even though they are logically equivalent to 
the negative universal quantifier no. (see Keenan 1987b for similar arguments against the 
semantic account of the indefiniteness effect in existential sentences by Barwise/Cooper 
1981). However, the conclusion that I would draw from the data in (1) is rather that they 
are marginal constructions and do not belong to the core of language. 
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ibly a modification of the restriction of the associated quantifier, as in 
(19): 

(19) [boy other than John] = {x l [boy](x ) & x =b [John]} 

From this, the semantic properties of other than-phrases can be derived. 
In order for other than-phrases not to operate vacuously, the complement 
of other than should refer to an entity in the restriction of the quantifier. 
The Negative Condition clearly will then not be imposed. And also there 
is no reason why the Quantifier Constraint should be enforced. 

The semantic operation associated with but not-phrases is generally 
conceived as the intersection of two generalized quantifiers, where the 
second quantifier is negated (cf. Keenan/Faltz 1985). Thus, every boy but 
not Mary will denote the intersection of the properties that every boy has 
with the properties that Mary does not have, as in (20): 

(20) ,[every boy but not Mary] = { P [ P  E [every boy] & 
P E (,[Mary])} 

Given the meaning of other than-phrases and but not-phrases, it is clear 
what EPs should not mean: EPs cannot just impose an operation on the 
restriction of the quantifier, and they cannot just enforce an intersection 
of a quantifier with some other quantifier. 7 

Let me now turn to the semantic analysis of EPs. Before presenting my 
own analysis, I will first discuss two other semantic approaches: first, 
Hoeksema's approach, which assumes that EPs enforce a global semantic 
operation on the model with respect to which the sentence is evaluated; 
and second, von Fintel's approach, who adopts the idea that EPs enforce 
a semantic operation on the restriction of the associated quantifier, subject 
to an additional semantic condition. We will see that these approaches 
lead to several empirical and conceptual problems. 

7 There are other proposals concerning the semantics of exception constructions which I will 
not discuss in this paper. Keenan/Stavi (1986) propose an analysis in which an EP is part of 
the determiner, forming a complex determiner such as every . . ,  but John. See Hoeksema 
(1989, 1992) for a critical discussion of their proposal. Hoeksema (1992) suggests a third 
analysis of EPs, which is based on substitutional quantification and in which an EP subtracts 
an atomic proposition from a set of propositions. This proposal, however, remains rather 
sketchy and stipulative. 



232 F R I E D E R I K E  M O L T M A N N  

3 .  P R I O R  P R O P O S A L S  OF THE S E M A N T I C S  OF 

E X C E P T I O N  P H R A S E S  

3.1. Exception Phrases as Modifiers of  Domains or Models 

Hoeksema in his earliest paper on EPs (Hoeksema 1987) proposes that 
flee EPs subtract a set of elements from the universe with respect to which 
the entire sentence is evaluated. The semantics of exception sentences is 
then roughly as in (21), where E is the universe with respect to which the 
sentence S is evaluated and C the term standing for the exception set: 

(21) [Except for C, S]E is true iff [S]E\[c] is true. 

Thus, on Hoeksema's (1987) view, EPs involve a global semantic oper- 
ation, affecting the evaluation of the entire sentence. Hoeksema in later 
papers (1989, 1992) himself notes a number of counterexamples to the 
view that EPs subtract a set from the universe with respect to which the 
entire sentence is evaluated. Generally, it appears, only one NP may be 
affected by an EP. Hoeksema (1989) gives the example in (22a). Another 
type of example showing the same point is given in (22b): 

(22)a. John's father hates everybody except John. 
b. Some people hate everybody except themselves. 

In (22a), the EP subtracts an element from the domain of a quantifier 
which is the referent of another NP in the sentence. Furthermore, (22b) 
could not possibly be true if the semantic values of themselves were sub- 
tracted from the entire universe, since themselves acts as a variable bound 
by an existential quantifier in the same sentence. 

Another type of counterexample was later also noted by Hoeksema (cf. 
Hoeksema 1992): 

(23)a. In a graphic tree, except for the root node, every node is 
dominated by another node. (Hoeksema 1992) 

b. Except for my youngest sibling, everybody in my family has a 
younger sibling. 

In (23a), if the EP would take away the 'root node' from the universe of 
the entire sentence, it would not make the sentence true, but rather 
create as many new exceptions as there are nodes in the tree immediately 
dominated by the root node. Similarly for (23b). 

Hoeksema in a later paper (Hoeksema 1989) presents a different pro- 
posal in order to account for (22a). He proposes that EPs do not modify 
the universe, but rather the entire model; they are 'minimal updating 
operators' on the model. This proposal is informally given in (24), where 
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Q stands for the quantifier the EP associates with, A for the restriction, 
and B for the scope; C, again, stands for the exception set: 

(24) A sentence of the form Q(A) except C B is true in a model M 
iff in every model M' which minimally differs from M in that 
for any c E [C] ra', [B] M'(c) yields the opposite truth value in 
M' from the one it yields in M, it is the case that Q(A)B is 
true in M'. 

This proposal accounts for the counterexamples of the type in (22). How- 
ever, as Hoeksema later (Hoeksema 1992) notes, the examples in (23) 
still present serious problems for it. 

The conclusion to be drawn from the examples in (22) and (23) is that 
EPs do not affect the evaluation of the sentence as a whole, but rather 
only the quantifier they associate with, leaving the semantic evaluation of 
the other parts of the sentence unaffected. That is, EPs involve only a 
local semantic operation on the associated quantifier: 8 

(25) The local semantic nature of exception phrases 
Exception phrases involve a semantic operation affecting only 
the associated quantifier. 

The semantic operation associated with an EP is therefore best considered 
an operation on the quantifier that the associated NP denotes. But what 
kind of semantic operation? A first possibility is that it is an operation on 
the restriction of the quantifier which subtracts the exceptions from that 
restriction. However, from the earlier discussion of other than-phrases, it 
is clear that this will not suffice. Taking away entities from the restriction 
of the quantifier is exactly what other than-phrases do, and we have seen 
that this will not explain two of the three basic properties of EPs: the 
Negative Condition and the Quantifier Constraint. Therefore, either 
further semantic conditions have to be imposed on what EPs do when 
they take away entities from the restriction of the quantifier, or the idea 
has to be abandoned that EPs operate on the restriction. The first alterna- 
tive has been adopted by von Fintel (1993). The second alternative is the 
one I will advocate. Let me first discuss von Fintel's proposal. 

8 In the range of exception constructions discussed in this paper,  there are two cases in 
which the associated quantifier is not denoted by a single NP: one of them are free EPs 
operating at the level of implications; the other  one are EPs applying to a polyadic quantifier 
formed from two or more quantifiers or operators in the sentence (cf. Part II). In both cases, 
on my account, the exception operation affects only a single (monadic or polyadic) quantifier, 
but no other semantic components  of the proposition expressed by the rest of  the sentence; 
also, it does not affect the model with respect to which the entire sentence is evaluated. 
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3.2. Exception Phrases as Operators on the Restriction of a Quantifier 

Von Fintel (1993) proposes that EPs semantically operate on the restric- 
tion of the associated quantifier, but subject to an additional condition, 
namely a uniqueness condition on the exception set. Von Fintel proposes 
the following condition on sentences with EPs: a sentence with an EP is 
true iff the EP-complement refers to the smallest set of entities such that, 
if this set is subtracted from the quantification domain of the associated 
quantifier, the sentence comes out true. Von Fintel formulates the seman- 
tics of exception sentences as in (26), where D stands for the determiner 
in question, A and B stand for its two arguments, and C is the term 
standing for the exception set: 

(26) Von Fintel's (1993) account of  exception sentences 
[D A except C B] = true iff [C] is the smallest set such that 
[D] ([A] \ [C]) [B] = true. 

In order for (26) to apply, another assumption is necessary, which von 
Fintel in fact makes, but is not quite explicit about. This assumption is 
that there is a unique, nonempty set that the EP-complement specifies as 
the exception set: 

(27) The Uniqueness Condition on the EP-complement 
The EP-complement specifies a unique set as the exception set. 

(27) can be satisfied only when the EP-complement is a specific singular 
or plural NP. And in fact von Fintel claims that this constraint holds. 

Let me first show how (26) applies to the various cases and then come 
to a critical discussion of von Fintel's proposal. 

The main advantage of (26) is that it applies to negative and positive 
quantifiers uniformly and that, as von Fintel claims, the Quantifier Con- 
straint follows from it. 9 Furthermore, from (26) both the Condition of 

9 Another argument yon Fintel (1993) gives for his proposal is that it correctly predicts that 
EPs with but cannot be iterated: 

(1) *every man but John but Bill 

Note, though, that this argument is rather weak in view of the fact that multiple adjunctions 
of the same type of PP are generally excluded: 

(2) *the book about America about politics 

The reason for the unacceptability of (2) and also (1) is clearly syntactic, since coordinations 
of such PPs are fine: 

(3) the book about John and about Mary 

Moreover, there are dear  cases that show that EPs can be iterated: 
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Inclusion and the Negative Condition follow. Let us first look at that and 
apply (26) to the examples in (28): 

(28)a. Every boy except John come. 
b. No boy except John came. 

If (28a) is true, then {John} is the smallest set such that, when it is 
subtracted from the set of boys, every boy came is true. But this means 
that John is a boy; otherwise, the empty set would be the smallest set, 
contrary to the assumption. The same reasoning holds for (28b). The 
Negative Condition follows in a similar way. If (28a) is true, then John 
did not come. Otherwise, the empty set would be the smallest set which, 
when subtracted from the quantification domain, would make the sentence 
true. 

Let us now see how the Quantifier Constraint could be derived from 
(26). EPs associated with quantifiers such as most, many, and few are 
generally ruled out since with these quantifiers the EP generally does not 
denote a minimal and unique set, satisfying the condition in (26). Con- 
sider, for example, most as in (29) in a situation in which two students 
passed the exam and John and Bill did not pass the exam: 

(29) #Most  students except John passed the exam. 

Applying (26) to (29), {John} is not the only minimal exception set which, 
when taken from the set of students, would make the sentence true; the 
set {Bill} would be another such set. 

Furthermore, von Fintel's condition makes the right predictions with 
respect to NPs with numerals such as in (30): 

(30) #Ten  students except John passed the exam. 

Let us consider the three most interesting models for (30). First, in a 
model with ten students, nine of whom passed the exam, John being the 
only student not having passed the exam, (30) does not come out as true. 
Taking away the singleton set containing John from the set of students 
just does not make the sentence true. Second, in a model with exactly 
eleven students, ten of whom passed the exam, John being the only one 

(4) Except for a few, Mary admires every musician except John. 

Thus, the general meaning of EPs does not prohibit iterations, and, in fact, my account 
allows for them. 

Note also that except-phrases may be coordinated, though but-phrases may not: 

(5)a. every man except John and except Biil 
b. *every man but John and but Bill 
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not having passed the exam, (30) does not come out as true either. {John} 
would not be the smallest set satisfying the condition in (26), but rather 
the empty set. Finally, in a model with exactly eleven students all of 
whom, including John, did not pass the exam, ten students passes the exam 
does not come out as true. {John} would be a minimal set satisfying the 
conditions in (26), but it is not a unique set. Any singleton set containing 
a student would be a minimal set such that, when it is taken away from 
the set of boys, the sentence without the EP would become true. 

(26) works quite well in predicting the Quantifier Constraint for most 
cases. However, there are both conceptual and empirical problems with 
von Fintel's account. Let me first discuss the empirical problems. 

First, there are examples violating the Quantifier Constraint, where the 
account makes the wrong predictions. In a model in which John and Mary 
are the only students and Mary passed the exam, but not John, (31a) and 
(31b) (an example noted by von Fintel himself) are unacceptable - as 
they are in any model; and in a model with three students among whom 
only John did not pass the exam, (32) is unacceptable: 

(31)a. #More than half of the students except John passed the exam. 
b. #Most  students except John passed the exam. 

(32) #More  than two thirds of the students except John passed the 
exam. 

Von Fintel's account predicts (31a), (31b), and (32) to be true in the 
models described. For instance, in the case of (33a), the set {Mary} makes 
up all, and hence more than half, of the students that passed the exam; 
and {John} is the smallest set such that, when subtracted from the quantifi- 
cation domain, more than half of  the students passed the exam becomes 
true. 

These violations of von Fintel's condition show a very general point 
about the nature of the constraint on the EP-associate. This constraint 
must take into account other models with respect to which the exception 
sentence may be evaluated and cannot just be accidentally satisfied by a 
given model. I will come back to this point in the next section. 

There are other empirical problems with von Fintel's proposal. First of 
all, von Fintel's proposal does not apply to exception sentences which 
allow for a potentially empty exception set, as in (33) and in (34a) with 



E X C E P T I O N  SENTENCES AND P O L Y A D I C  Q U A N T I F I C A T I O N  237 

the exception expression almost, which, as (34b) shows, also imposes the 
Quantifier Constraint: 1° 

(33)a. all students except at most three 
b. all students except at most John 

(34)a. Almost every man came. 
b. Almost all men/no men/#few men/#most men/# some men 

came. 

Almost basically has the semantic function of an EP; but it does not specify 
what the exceptions are, and moreover, it does not even imply that there 
is an exception (since (34a) would not be false if no man came). 

A related problem with von Fintel's proposal is that it does not apply 
to quantified EP-complements as in (35): 

(35) Every boy except one/except exactly three came. 

The examples in (33), (34a), and (35) show that the assumption (27), a 
presupposition for (26) to be applicable at all, does not hold. 

Another problem of empirical coverage with von Fintel's proposal con- 
cerns the nature of the EP-associate. Von Fintel's account presupposes 
that EPs associate only with an NP in which the N' acts as the restriction 
of the quantifier that the NP denotes. But there are exception construc- 
tions where this is not the case, for instance those in (36): 

(36) a. every man and every woman except the parents of John 
b. ?neither John nor Bill nor Mary nor Sue except the oldest 
c. the wife of every president except Hillary Clinton 

Let me now turn to the conceptual problems with von Fintel's account. 
One of them is that it is not compositional in nature. Even though the 
operation of domain subtraction is a local semantic operation applying 
only to the restriction of the associated quantifier, the Uniqueness Con- 
dition is a global condition, involving the truth conditions of the entire 
sentence: it requires that the entire sentence without the EP already be 
evaluated in order for the EP to have its semantic effect in the sentence. 

1o I will not give a satisfactory treatment of almost in this paper. I take it that almost means 
something like 'except less than ten percent' and hence falls under EPs with quantified 
complements which are analysed in Section 6. See also Fn. 2. 

Note, that almost also allows larger cardinals and degree words, as in ( la ,  b): 

(1)a. almost a hundred men/#ten men 
b. John weighs almost 200 pounds. 

Thus, unlike other EPs, almost may apply also to a scale of degrees or numbers. 
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Another conceptual problem is that von Fintel's proposal, as stated in 
(26), confuses truth conditions with acceptability conditions. An exception 
sentence not meeting (26) is not false, as von Fintel would predict, but 
rather unacceptable. For example, some men except John came is simply 
unacceptable, not false. There does not seem to be a way to recast (26) 
so that it separates truth and falsehood from acceptability. 11 

4. A NEW SEMANTIC ANALYSIS OF EXCEPTION CONSTRUCTIONS 

4.1. The Basic Idea 

The point of departure of the present proposal is that EPs semantically 
are functions from generalized quantifiers to generalized quantifiers, that 
is, sets of sets (or, as we will see in Part II, sets of relations). More 
precisely, when an EP applies to a generalized quantifier, it modifies the 
sets in this quantifier and yields another set of sets. How do EPs modify 
these sets? They do either one of two things: 

[1] subtract the exceptions from the sets in the generalized quantifier, 
or 

[2] add the exceptions to the sets in the generalized quantifier. 

[1] applies in case the quantifier is positive. In the case of every boy except 
John, except John applies to the set of sets containing all the boys and takes 

11 To see this, consider the most  plausible way of restating (26). Take the model ment ioned 
above for the sentence ten students except John came, where ten students including John 
came. Furthermore,  consider the sentence every student except John came, in a model in 
which every student including John came. In order to make the first sentence come out  as 
unacceptable and the second one as false, one would have to separate the condition of the 
exception set being the smallest set into a minimality condition and a uniqueness condition. 
This would yield a modification of von Fintel 's proposal within a three-valued semantics as 
follows: 

(1) f = true if [C] is the unique minimal set such that 
| [D]([A]\[C])([B]) = true. 

[D A except CB]  i = false if [D]([A]\[C])([B])  = false or [C] is not  a 
[ minimal set such that  [D]([A]\[C])[B] = true 

= undefined otherwise. 

Given (1), the first sentence above comes out  unacceptable,  since {John} is minimal, but  not  
unique (with respect to the relevant condition); and the second sentence comes out  as false, 
since {John} is not  minimal (the empty set is a smaller set satisfying the relevant condition). 
However,  (1) now gives the wrong result for the sentence some boy except John came in a 
model in which John and some o t h e r  boy came. Again, {John} is not  minimal (only the 
empty set is); but  still the sentence is unacceptable,  rather than false. Note,  moreover,  that  
the reformulation of (26) as (1) above loses some of the appeal of (26) in that  it involves a 
disjunctive condition for falsehood. 
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John away from each one of these sets. [2] applies when the quantifier is 
negative. In the case of no boy except John, except John applies to the 
set of sets containing no boy and adds John to each one of these sets. 

However, in order for the semantic operation associated with an EP to 
be applicable to a set of sets and subtract or add elements, a certain 
precondition has to be satisfied: either the entities specified as the excep- 
tions are included in every set in the generalized quantifier, or they are 
excluded from every set in the generalized quantifier. In order for [1] to 
apply, the exceptions have to be included in every set, and in order for 
[2] to apply, they have to be excluded from every set. In the case of every 
boy except John, given that John is a boy, John is included in every set 
in the denotation of every boy; hence the operation of subtraction can 
apply. In the case of no boy except John, John is excluded from every set 
in the denotation of no boy, hence the operation of addition can apply. 

I will call the condition of either being homogeneously included in every 
set in the quantifier or being homogeneously excluded from every set in 
the quantifier the Homogeneity Condition, which can be defined as the 
following relation: 

(37) A (generalized) quantifier Q satisfies the Homogeneity Con- 
dition with respect to a set C (Hom(Q, C)) iff either C C_ X for 
all X ~ Q or C fq X = 0 for all X E Q. 

The Homogeneity Condition will play a crucial role in explaining the 
Quantifier Constraint, and it also accounts for the Condition of Inclusion. 

The satisfaction of the Homogeneity Condition influences the ac- 
ceptability, not the truth, of an exception sentence. If the Homogeneity 
Condition is not satisfied for an exception NP, the denotation of that NP 
will be undefined, and hence the denotation of the sentence containing 
the NP will be undefined, as well. Thus, my proposal strictly separates 
acceptability conditions and truth conditions. I will come back to the role 
of the Homogeneity Condition later. 

Now the semantics of EPs can be given in a preliminary waY. The 
denotation of except (as well as but and except for) is taken to be a function 
which maps an NP-denotation (the denotation of the EP-complement) to 
a function from generalized quantifiers (the denotation of the EP-associ- 
ate) to generalized quantifiers. Thus, except is of type ((e, t), (((e, t), t), 
((e, t), t))). At this point, I will take into account only EP-complements 
that are definite singular or plural NPs. The analysis will later be extended 
to other types of NPs. For the moment, I will say that if the EP-comple- 
ment is singular, it denotes a singleton set and if it is plural, a set consisting 
of several entities. Thus, in (38), [NP2], the semantic value of NP2, is a 
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set containing one or more entities, whereas [NP~], the semantic value of 
NP1, is a set of sets, a generalized quantifier: (38) { 
([except]([NP2]) )([NP1]) 

= {V\ [NP2] l V E [NPI]}, if for all V E [NPI], 
[NP2] __C_ V. 

= {V U [NP2] l V ~ [NP,]}, if for all 
V e [NP,], [NP2] D V = 0. 

= undefined otherwise. 

Let us apply (38) first to every boy except John. The set {John} is a 
subset of every set in [every boy]; hence subtraction can apply. It will 
yield as the denotation of every boy except John the set containing all sets 
V\{John}, where V ~ [every boy]. Now let us apply (38) to no boy except 
John. The set {John} has an empty intersection with every set in [no boy]; 
hence addition can apply, and the denotation of no boy except John will 
be the set containing all sets V U {John}, where V ~ [no boy]. What would 
happen in the case of some boy except John? In a model with at least two 
boys, John and Bill, both the set {John} and the set {Bill} will be in the 
extension of [some boy]; hence the set {John} will be included in some 
set, but excluded from some other set, in the denotation of some boy in 
that model; hence the Homogeneity Condition will not be satisfied. The 
denotation of some boy except John will be undefined in that model. 

I will now show in detail how the three semantic properties of exception 
constructions can be derived, given (38). We will see that some modifica- 
tion is required in order to fully derive the Quantifier Constraint. 

4.2. Deriving the Basic Semantic Properties of Exception Constructions 

4.2.1. Deriving the Negative Condition 

The Negative Condition follows immediately from (38). A generalized 
quantifier determines which predicates make the sentence true. Hence, if 
an element is taken away from every set in the generalized quantifier, 
then, in order for the sentence to be true, this element may not belong 
to the predicate extension. Likewise, if an element is added to every set 
in the generalized quantifier, then, in order for the sentence to be true, 
this element must belong to the predicate extension. 

4.2.2. Deriving the Condition of Inclusion 

The Condition of Inclusion logically follows from the Homogeneity Con- 
dition: 



E X C E P T / O N  SENTENCES AND P O L Y A D I C  Q U A N T I F I C A T I O N  241 

(39) PROPOSITION. For any determiner D and any sets A and 
C, if Hom(D(A), C), then C C A. 

Proof. First case: Let A and C be sets such that C is homo- 
geneously included in D(A). Let X ~ D(A). Then, by Conserv- 
ativity, X n A E D(A). Given the assumption, C C X O A, and 
hence C C A. Second case: Let A and C be sets such that C is 
homogeneously excluded from D(A). Assume that C _~ A, i.e., 
there is a set C', C' 4: I~, C' = C\A. Let X be an element of 
D(A). By Conservativity, A n x E D(A). Since C' n A = ~t, 
A n x = A n (x  u C'). Hence, by Conservativity, 
X U C' E D(A). C O (X U C') 4: I~. Thus, C is not homogene- 
ously excluded from D(A), contradicting the assumption. 

So the Condition of Inclusion follows from a semantic analysis of exception 
NPs which does not mention the restriction of the associated quantifier at 
all. 

4.2.3. Deriving the Quantifier Constraint 

The Homogeneity Condition as incorporated in (38) accounts for the 
Quantifier Constraint as long as appropriate models are considered. As 
was mentioned above, in a model with at least two boys, (40a) is ruled 
out, since [some boy] will contain both a set containing John and a set 
not containing John, and similarly (40b) will be ruled out in a model with 
more than ten boys: 

(40)a. #some boy except John 
b. # ten boys except John 

Moreover, in a model with more than two boys, (41) will be ruled out: 

(41) #most boys except John. 

Assuming, following Barwise/Cooper (1981), that most roughly means 
'more than half', there will be three sets in the denotation of most students 
that include John and one set that excludes him. 

Thus, given appropriate models, the Homogeneity Condition rules out 
inappropriate NPs as the associates of EPs. However, the Homogeneity 
Condition in (38) is too weak when certain other, smaller models are 
considered. (40a) will come out as acceptable for a model containing 
exactly one boy, namely John. Given that model, John will be included 
in every set in [some boy]. Hence subtraction should be applicable. Fur- 
thermore, (40b) will come out as acceptable in a model containing exactly 
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ten boys. With respect to this model ,  John will be  included in every set 

in [ten students], hence subtraction should apply. Finally, in a model  with 
only two boys, (41) should be acceptable,  since if there are only two boys, 

neither one constitutes more  than half of the boys; hence both have to be 
included in every set in [most boys]. 

What  these examples show is that, if the Homogene i ty  Condition should 

imply the Quantifier Constraint,  then the Homogene i ty  Condition should 
have to be satisfied not only with respect to one particular model ,  but 

with respect to certain other models,  as well. For  (40a, b) and (41), the 

Homogene i ty  Condition should then not only be  satisfied with respect to 

the first models (given that  they are the intended models),  but with respect 
to the second models,  as well. 12 

But which are in general the models with respect to which the Homo-  
geneity Condition should be satisfied? 13 

A first possibility one might consider is that the Homogenei ty  Condition 

should be satisfied with respect to all models. That  is, an exception NP 
such as NP~ except John should be  acceptable only if John is included in 

every set or  excluded f rom every set in the denotation of NP~. But this 

cannot be right. In models in which John is not a boy (and we do not 

want John 's  being a boy to be  a logical truth), the Homogene i ty  Condition 
will be  satisfied neither for every boy except John nor  for no boy except 
John. 

So the Homogene i ty  Condition should have to be satisfied only for a 

particular class of models.  These models must include models with larger 
domains than the intended model ,  and they should mee t  certain con- 

ditions. One of these conditions, clearly, is that the denotations of the 

predicates in those models should be the same when restricted to the 
domain of the intended model.  

But  there are further conditions that have to be imposed on these 

models having to do with the satisfaction of the presupposit ions of the 

12 One might think that, already for pragmatic reasons, (40a) is inappropriate in a model 
with only one student and (41) in a model with only two students. Given such models, 
instead of (40a), one would rather say no boy, and instead of (41), one boy but not John. 
However, such an explanation would not necessarily apply to (40b) in a model with only 
ten boys. This holds in particular if the speaker does not know how many boys there are. 
Even for (40a) and (41), the pragmatic explanation presupposes that the speaker knows 
exactly how many boys there are; but this certainly need not be the case. Knowledge about 
the intended model has to be distinguished from the model itself. 
13 This shift from a condition on EPs relative to a given model to a condition involving other 
models recalls the distinction between local and global constraints on quantifier denotations 
in the theory of generalized quantifiers (see in particular van Benthem 1987, Westerstahl 
1989). A local constraint is a constraint relative to a given universe, a global constraint is a 
constraint across universes. 
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EP-complement and EP-associate. For an EP-complement such as the 
president or the boys, one should not consider models in which there is 
not exactly one president or there are no boys. Rather, in the relevant 
models, the denotation of the EP-complement should be defined whenever 
it is defined in the intended model. 

Unlike the presuppositions of the EP-complement, however, the pre- 
suppositions of the EP-associate should not have to be satisfied in the 
relevant models. The reason is that quantifiers such as all ten students or 
all of  the ten students accept EPs, but their presupposition, namely that 
there are exactly ten students, would not be satisfied in any extension 
of the intended model in which more students have been added. The 
Homogeneity Condition certainly should be checked in extensions that 
contain more students than the intended model. It should therefore not 
be required that the presuppositions of the EP-associate be satisfied in 
the relevant extensions. This means that all ten students will be evaluated 
simply like all students in those extensions, with its presupposition that 
there are exactly ten students being suspended. 

Even though the Homogeneity Condition has to be satisfied in particular 
extensions of the intended model, it need not be satisfied in submodels. 
For, reducing the domain without affecting the exceptions will not alter 
the inclusion or exclusion relations with the exception set. 

So the class of the relevant extensions, the 'appropriate extensions' of 
the intended model (as I will call them), can now be defined as follows: 
an appropriate extension M' of a model M for an NP of the form 'NP~ 
except NP2' is an extension of M such that NP2 has the same semantic 
value in M' that it has in M, whereby the presuppositions of NP~ need 
not be satisfied in M'. 

The semantics of exception NPs then has to be restated as follows: 

(42) 

([except]M([NP2]M) )([NP1] M) 

= {V\[NP2IM [ V ~ [NPa] M} if for every 
appropriate extension M' of M, for 
every V ~ [NP~] M', [NP2] M' c_ V. 

= {V U [NP2]M I V E [NP~] M} if for every 
appropriate extension M' of M, for 
every V ~ [NPI] M', [NP2] M' Cl V = ~. 

= undefined otherwise. 

The analysis I have proposed explains why NPs with every and no are 
acceptable as the associates of EPs and why NPs with some, ten, or most 
are not. However, there are other types of NPs that are candidates for 
allowing EPs. In the next section, I will show how the proposal accounts 
for some interesting cases. 
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5 .  O T H E R  T Y P E S  OF NPs AS THE A S S O C I A T E S  OF EPs  

5.1. NPs with Quantified Determiners and Modifiers as EP-associates 

There are two other types of NP which do not obviously denote a universal 
or negative universal quantifier, but allow for EPs. These are, first, NPs 
whose determiners are universal or negative universal possessive NPs, as 
in (43a); and second, inverse-linking constructions where an NP takes a 
complement denoting a (negative) universal quantifier, as in (43b): 

(43)a. Every president's/No president's wife except Hillary Clinton 
came. 

b. The wife of every president/no president except Hillary Clinton 
came. 

The acceptability of EPs in these cases poses a problem for any account in 
which a quantified NP such as every president or no president is interpreted 
outside of the NP, for instance by having moved out of the NP by Quan- 
tifier Raising. On such an account, the NP left behind would be interpreted 
as a definite description containing a variable bound from the outside, as 
in (44), for the first sentence of (43a): 

(44) Vx([president](x) ~ [come](~y[[wife](y, x)])) 

But except Hillary Clinton cannot apply to the denotation of an NP that 
has the status of a definite description such as sets of the form 
{X[ ~y[(y, x) ~ [wife]] E X}, because then, for all values of x except Bill 
Clinton, the Homogeneity Condition will be violated. 

The applicability of EPs with the NPs in (43) can be accounted for, 
however, under the assumption that the universal or negative universal 
NPs in specifier or complement position are interpreted inside the Np.14 
On this view, NPs such as every president's wife will denote a generalized 
quantifier of a certain kind, namely the set of sets X such that for every 
president x, x's wife is in X, and no president's wife will denote the set 
of sets X such that for no president x, x's wife is in X. These will also be the 
denotations of the wife of every president and of the wife of no president, 
respectively. Thus we get: 

14 This account is in accordance with certain syntactic and semantic analyses in the literature. 
May (1985) assumes that the complement NP in inverse linking constructions undergoes 
Quantifier Raising only inside the NP, adjoining to the NP node. Keenan and Faltz (1985) 
and Keenan and Stavi (1986) proposed the semantic treatment of inverse-linking NPs that I 
adopt. 
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(45) [every president's wife] 
= {P[Vx([president](x) ~ P(~y[wife](y, x)))} 

With these denotations, the Homogeneity Condition is satisfied with re- 
spect to the set {Hillary Clinton}. Applying subtraction to the quantifier 
in (45) will yield the set {V\{H.C.} [ V ~ [every president's wife]} as the 
denotation of every president's wife except Hillary Clinton. 

The acceptability of EPs with the NPs in (43) shows an important 
general fact about natural language: even for sentences representable 
by only first-order quantifiers, natural language may require generalized 
quantifiers. The first-order representation of (43a) in (44) does not provide 
an appropriate semantic object for the EP to operate on; only the gen- 
eralized quantifier in (45) does.15 

5.2. Definite NPs as the Associates of Exception Phrases 

Definite plural NPs provide a case where EPs operate at the level of 
implications. 

Definite plural NPs such as the men have often been considered equiva- 
lent to universal quantifiers (e.g. in Barwise/Cooper 1981). However, they 
are significantly less acceptable with EPs than universally quantified NPs. 
This holds not only for definite plurals that can be considered specific, as 
in (46a), but also definite plurals which are nonspecific, as in (46b): 

(46) a. # T h e  boys but John/except John came. 
b. # T h e  boys in this class but John/except John came. 

The alternative view of definite plurals, and in fact the more generally 
accepted view, is that definite plurals are not quantified NPs at all, but 
rather referential NPs referring to groups, namely the maximal groups of 
entities satisfying the corresponding singular N' (cf. Link 1983, Krifka 
1992). If this is so, then EPs with singular EP-complements should not be 

15 A further piece of evidence for my account of the denotation of every president's wife 
comes from data with variable-binding. As is well-known, a quantified NP in specifier 
position can bind a pronoun,  as in (la).  However,  when the entire NP is modified by an 
EP, as in (lb) such pronoun binding is hard to get. This follows if ( lb)  obligatorily has to 
be analysed as in (lc) in order for the pronoun to be properly bound: 

(1)a. Every president's wife thinks that he is a genius. 
b. Every president's wife except Hillary Clinton thinks that he is a genius. 
c. For all x, x a president, the wife of x thinks that x is a genius. 

Thanks to a reviewer for bringing these examples to my attention. 
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able to apply at all, since EPs do not generally apply to a group of entities 
taking away or adding a member to that group. 

However, there is one type of exception construction with definite plural 
NPs that is acceptable, namely where except for-phrases occur in adverbial 
position, as in (47): 

(47) The boys came except for John. 

A plausible explanation for the acceptability of (47) is that here the EP 
does not apply to the denotation of the NP the boys, but rather operates 
at the level of implications, a phenomenon discussed earlier in Section 
2.3. At that level, the predicate came, which is interpreted distributively, 
will yield a universal quantifier ranging over the members of the group 
the predicate is predicated of; and this is a quantifier the EP can apply 
t o .  16 Let us assume that G is an appropriate operation mapping a set to 
the group composed of the members of the set (for whatever notion of 
group one may adopt). Then a definite plural NP such as the boys will 
have the denotation G([boy]). As an evaluation of (47), we get (48), 
where < is an appropriate part relation, relating members to a group: 

(48) [except for John](EVERY({x [ x < [the boys]})([came]) 

(47) then belongs to the same class of phenomena as (17a), repeated here 
as (49), where the EP relates to an implied universal quantifier ranging 
over the parts of the house: 17 

(49) Except for the door John painted the house red. 

The view that definite plural NPs refer to groups now requires a slight 
modification of the treatment of EPs where the EP-complement is a plural 
NP, as in (50): 

(50) every boy except the boys in this class 

16 I here assume that distributivity is a matter of the lexical meaning of the predicate, rather 
than being a matter of the presence of a tacit distributive quantifier in the sentence meaning. 
See Moltmann (to appear b) for an extensive discussion. 
17 As was pointed out to me by Kit Fine, EPs may even associate with definite plurals with 
a collective predicate, as in ( la) ,  though with some collective predicates the result is de- 
graded, as in ( lb) ,  noted by a reviewer: 

(1)a. The boys played basketball together except for Bill. 
b. # T h e  rocks rained down except for this one. 

In (la)  the EP seems to apply to a 'universal procedure'  for forming a collective agent of 
an event, rather than a universal quantifier. I would assume that this, again, takes place, in 
some way, at the level of implications. 
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If the boys in this class in (50) refers to a group, then in order to apply 
the exception operation of subtraction to the sets in the denotation of 
every boy, the group of the boys in this class has to be replaced as the 
denotation of the boys in this class by the set of boys in this class. Let g 
be a function mapping a group of entities onto the set composed of the 
atoms of this group (g(x) = {y[y ~ ATOM(x)}). Then the formulation of 
the semantics of EPs as given in (38) is to be modified by replacing '[NP2]' 
(which, recall, denotes a set) by 'g([NP/])'. 

In order to give some independent support to the view that EPs may 
operate at the level of implications, let me present two other cases, both 
of which involve only. 

In the first case, a free EP occurs in a sentence with an NP modified 
by only: TM 

(51)a. Only boys came except for Mary. 
b. Only John came except for Bill. 

Again, the free EP here operates at the level of implications. (51b) without 
the EP is equivalent to (52a), where a universal quantifier ranges over the 

~s At this point the question arises whether NPs modified by only allow for EPs. The data 
here seem somewhat messy. All speakers dislike (la) and (lb), but some accept (lc) (Bill 
being one of John's sons): 

(1)a. #Only boys except Mary left. 
b. #Only John except Mary left. 
c. (#)Only John's sons except Bill left. 

On one view of only as an NP-rnodifier, the badness of ( la-c)  might be unexpected. On 
this view, only boys denotes the set {V I V C__ [boy]}, only John denotes the set {{John}} and 
only John's sons, arguably, the set {{xl(x, John) ~ [son]}}. With all three sets the Homo- 
geneity Condition is satisfed by {Mary} and, for (lc), by {Bill}; hence addition and, in the 
case of (lc), subtraction should be able to apply and provide sensible interpretations. 

With such a view of only, however, the badness of (la) may be attributed to the following 
pragmatic condition: the cardinality of the exception set must be smaller than any set in the 
associated quantifier it is added to or subtracted from. (This is the Minority Condition 
introduced in Section 6). The denotation of only boys includes the empty set, and for this 
set the Minority Condition would be violated. Also (lb) might still fall under this explanation. 

On another view of only (which was pointed out to me by a reviewer) the badness of (lb) 
and (lc) can be explained (in addition to the unacceptability of (la)). On this view, the 
implication of (lb) that John left and of (lc) that John's sons left constitute only presupposi- 
tions and hence do not form part of the denotation of the only-phrases. Then, the denotation 
of only John is {{John}, 0} and the denotation of only John's sons {V I V C {x I (x, John) 
[son]}. Now the Minority Condition applies and rules out (lb) and (lc). 

Given the two views of only, which (supplemented by the Minority Condition) differ only 
in their predictions about (lc), one may speculate that those speakers who accept (ic) simply 
take the first, not the second, view of only. 
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VP denotation and hence provides a quantifier for the EP to apply to, 
yielding (52b), and similarly for (51a) and (52c): 

(52)a. (EVERY([came]))([boys]) 
b. ([except]({Mary})) ((EVERY([came]))([boys])) 
c. ([except]({Bill})))((EVERY([carne]))({x l x = John})) 

The other case where an EP operates at the level of implications is 
(53a), as opposed to (53b), an example given by Hoeksema (1987, 1992) 
(who explains it differently): 

(53)a. Except for Bill, John is the only realtor. 
b. #Except for Bill, I met the only realtor. 

(53a) without the EP is equivalent to 'for every realtor x, x = John', which 
provides a universal quantifier for the EP except for Bill to apply to. By 
contrast, no such quantifier can be construed for (53b), and hence the EP 
will be vacuous semantically. 

5.3. Wh-phrases as the Associates of Exception Phrases 

Like definite NPs, wh-phrases in interrogatives also allow for free EPs, 
though not for connected EPs: 

(54) a. #Mary knows which students except John passed the exam. 
b. Except for John, Mary knows which students passed the exam. 

In current theories, wh-phrases are generally not construed as universal 
quantifiers. Rather, they are construed, for instance, as existential quanti- 
tiers in Karttunen's (1977) theory and as syncategorematic elements, and 
hence not quantifiers at all, in Groenendijk and Stokhof's (1984) theory. 
But in both theories, interrogative sentences are equivalent to sentences 
involving universal quantification. Within Karttunen's theory (which is 
based on weak exhaustiveness) (55a) is equivalent to (55b) and within 
Groenendijk and Stokhof's theory (which is based on strong exhaus- 
tiveness) to (55c): 

(55)a. Mary knows which students passed the exam. 
b. For every student x who passed the exam, Mary knows that x 

passed the exam. 
c. For every student x, Mary knows whether x passed the exam. 

Given either the theories of interrogatives such as Karttunen's and Gro- 
enendijk and Stokhof's, the EPs in (54) can be evaluated only at the level 
of implications, as represented by (55b) and (55c), which both provide 
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universal quantifiers for the EP to operate on. Note that (55b) and (55c) 
do not fare the same with respect to providing the appropriate quantifier 
for the EP. (55c) does not imply that John passed the exam. Hence John 
will satisfy the Homogeneity Condition only for the quantifier 'for every 
student' in (55c), not for the quantifier 'for every student who passed the 
exam' in (55b). Thus, EPs provide a new criterion for evaluating Karttu- 
nen's and Groenendijk and Stokhof's theory of interrogatives. 

This concludes the discussion of NPs that EPs may associate with. I will 
now draw the attention to the EP-complement, which may take the form 
of a range of NPs other than just definite NPs, as discussed so far. 

6. EXTENDING THE ANALYSIS TO Q U A N T I F I E D  AND DISJOINED 

COMPLEMENTS OF EXCEPTION EXPRESSIONS 

6.1. Quantified Complements 

As was mentioned earlier, EPs allow for quantified complements of except 
or but: 

(56) every student except one/at most two/exactly two 

In this section, I will show that the analysis proposed so far can be 
extended in a rather straightforward way to account for quantified EP- 
complements. 

First, however, let me briefly discuss a potential alternative account of 
the data in (56) which would preserve the analysis of simple exception 
constructions. On this account the data in (56) would be considered cases 
of simple exception constructions where the except-complement takes wide 
scope and except applies to the value of a variable. Thus, (57a) would be 
taken as equivalent to (57b): 

(57)a. Every student except one solved the problem. 
b. For one x, every student solved the problem except x. 

If this were correct, then the data in (56) could be handled simply by 
applying the analysis of simple exception constructions in (38) to an EP 
containing a variable. 

However, there are problems with this proposal. First, quantified except- 
-complements behave differently from quantified NP-modifiers taking 
wide scope (inverse linking). The difference shows up first with decreasing 
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quantifiers, which may not take wide scope, but can act as complements 
of except: 19 

(58)a. No student except at most two solved the problem. 
b. #No representative of at most two countries came to the meet- 

ing. 

(58b) is impossible in a reading in which at mos t  two countries takes scope 
over no representative. 

Second, the difference shows up in the fact that inverse linking is (for 
some reason) impossible with NPs modified by possibly,  as in (59a), 
whereas such NPs may act as EP-complements, as in (59b): 2° 

(59)a. Somebody from possibly every city was present. 
b. Every student except possibly one solved the problem. 

Another problem with the proposal is that a paraphrase such as (57b) 
for (57a) does not work for all cases. For instance, it gives the wrong 
result for (60a), namely (60b), which falsely implies that there is at most 
one exceptional student: 21 

(60)a. Every student except at most two solved the problem. 

19 Inverse linking with decreasing quantifiers is possible only with certain NPs such as bare 
plurals and definites, as pointed out by a reviewer: 

(1)a. Members of at most three clubs were present. 
b. The students of at most three universities were represented. 

20 Exception NPs such as every boy except possibly John involve epistemic possibility. They 
can perhaps best be analysed within a semantics which is based on the notion of an infor- 
mation state such as Data Semantics (el. Veltmann 1984, 1986) (see Section 7). On such an 
account, every boy except possibly John came may be paraphrased in the following way: in 
the present information state s (whose domain does not include John), it is the case that 
every boy came; and in some extension s' of s whose domain includes John, it is the case 
that every boy except John came. The problem is, however, how to obtain such a meaning 
of the sentence in a compositional way, a problem which I have to leave open for further 
research. 
21 One way of rescuing the account might be to analyse plural quantifiers such as at most 
two as cardinality attributes. Then (60b) would be replaced by (1): 

(1) For a set X such that X has at most two students as members, every student 
except X solved the problem. 

However, such an analysis of quantifiers like at most two runs into problems in other contexts 
such as (2): 

(2) At most two students solved exactly two problems. 

(2) does not mean that there is a group X having at most two students as members such 
that X solved exactly two problems. Rather, it says that the maximal number of individual 
students that solved exactly two problems is at most two. 
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b. For at most two x, every student except x solved the problem. 

Thus, a general reduction of the constructions in (56) to simple excep- 
tion constructions with wide scope except-complements fails. The quant- 
ified complements of except should instead be treated 'in situ'; more 
precisely, the denotation of except should be conceived of as an operation 
mapping a generalized quantifier onto a function from generalized quanti- 
tiers to generalized quantifiers. 

The way of extending the analysis to quantified EP-complements is to 
have the exception operation apply pointwise to the elements in a parti- 
cular set of sets obtained from the denotation of the complement of except. 
Let us first consider the case of quantified NPs such as one(boy). I will 
later come to the question of what in general the range of possible EP- 
complements is. For the denotation of one (boy), this set will be {{John}, 
{Bill}}. The exception operation now applies to both elements in this set 
by first subtracting the set {John} from each of the sets in the denotation 
of every boy, yielding a set of sets X1; and second, subtracting the set 
{Bill} from each of those sets, yielding a set of sets X2. After this, set 
union will apply to XI and X2, yielding the denotation of every boy except 
one. This denotation is the same as for every boy except John or every 
boy except Bill in the model in question, which is the desired result. 

In order to implement this analysis technically, I first introduce two 
notions required to get the set {{John}, {Bill}} from the denotation of one 
boy (in the relevant model). The first notion is the notion of a live-on set, 
as defined in Barwise/Cooper (1981): 

(61) A quantifier Q lives on a set A iff (for every set X, X E Q iff 
X N A E Q ) .  

A live-on set for the quantifiers denoted by every boy, no boy, and one 
boy is any set containing the set of boys as a subset. 

The second notion I will introduce is the notion of a witness set (which 
is defned in a slightly different way than in Barwise/Cooper 1981): 

(62) A set w is a witness set for a quantifier Q iff for the smallest 
live-on set A of Q, w c A and w ~ Q. 

The quantifier denoted by every boy has the set of all boys as its only 
witness set, the quantifier denoted by one boy has all the singleton sets 
of boys as its witness sets, and the quantifier denoted by at most two boys 
all sets consisting of at most two boys. 

As part of the meaning of an exception construction, the denotation of 
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the EP-complement will be mapped onto the set of the witness sets by 
the function W defined below: 22 

(63) W(Q) = {w]w is a witness set for Q} 

Thus, we will get W([one(boy)])= {{John}, {Bill}} (in the model under 
consideration). 

The denotation of every boy except one can now be given as in (64): 

(64) [every boy except one] = U { V \ V ' IV  ~ [every 
V'EW([one(boy)]) 

boy]} 

Of course, also exception NPs of the form every boy except John or every 
boy except the boys in this class can be analysed in this way, taking John 
and the boys in this class to denote generalized quantifiers (principal 
filters generated by the singleton set containing John and the singleton set 
containing the group of boys in this class). 

In order to generalize the formal semantics of EPs appropriately, we 
have to first answer the question of how the Homogeneity Condition is 
satisfied by quantified EP-complements. A simple answer can be given as 
follows: If NP2 is the EP-complement and W([NP2]) contains more than 
one set, then the Homogeneity Condition is satisfied iff either every set 
in W([NP2]) is included in every set in [NP1] or every set in W([NP2]) is 
excluded from every set in [NP1]. As usual, this condition has to be 
satisfied with respect to every appropriate extension of the intended 
model. Thus, both sets in W([one boy]) are subsets of every set in [every 
boy] (in every appropriate extension of the intended model). Hence the 
Homogeneity Condition is satisfied. 

So the more general definition of the semantics of EPs is: 

22 The operation W is similar, though distinct, from the exhaustivization operation exh that 
Groenendijk and Stokhof (1984) employ to ensure the exhaustiveness of constituent answers. 
exh maps a quantifier onto the set of its minimal elements, which allows John as an answer 
to who came? to be interpreted as 'only John' (which amounts to a complete list of people 
who came). For quantifiers such as every boy or John exh will yield the same result as W. 
However, the two operations exh and W yield different results in many cases, e.g. for plural 
quantifiers such as f ew,  at most  two, or at least two. exh maps no N' ,  f ew  N' and at most  
two N' all onto the empty set, an undesirable result. As a remedy, Groenendijk and Stokhof 
stipulate that plural quantified NPs such as f ew  N' and at least two N' quantify over groups 
with at least two members. This, however, predicts obligatory group readings for those 
quantfiers that are in fact not present. For instance, at most  two students found  two solutions 
allows for two students to have found a different two solutions. The operation W does not 
run into those problems. 
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(65) 

([except ]M([ NP2 ]M) ([ NP1]M) 

= U { v \ v '  I v E [Np~]M}, if for 
V' EW([NP2] M) 

every appropriate extension M' of M, 
for every V E [NP1] u '  and for every 
V '  E [NP2] M ' ,  V '  C V .  

U {v u v ' l v  e [NP1]M}, if 
V'EW([NP2] M) 

for every appropriate extension M' of 
M, for every V E [NP1] M' and for 
every V' E [NP2] M', V' A V = 0. 
undefined otherwise. 

This analysis is general enough to account for all kinds of quantified 
EP-complements. However, as it turns out, not all quantified NPs are 
actually acceptable, for example, NPs of the form at least N': 

(66) #every boy except at least two 

The unacceptability of at least two in (66), however, can be attributed to 
a plausible general constraint on exception NPs, namely that any potential 
exception set (that is, in (66), any element of W([at least two (boys)])) be 
of lesser cardinality than the restriction of the quantifier, that is, in (66) 
the set [boy]: 

(67) The Minority Requirement 
For any model M, [except NP2]M([NP1] M) is defined only if for 
every V E W([NPz]~t), IA] > [V], where A is the smallest live- 
on set of [NP1] M. 

There are other constraints on the EP-complement which are more 
mysterious and require further research. Certain types of quantified NPs 
are bad even when the Minority Requirement is satisfied, for instance, 
every Texan and less than five, even though these NPs should provide the 
same (potential) exception sets as the Texans and at most four (and at 
most four and less than five even denote exactly the same quantifiers): z3 

23 An important observation, pointed out to me by Anna Szabolsci, is that the constraints 
on the EP-complement appear to be the same as the constraints on the NPs that may be 
modified by only (or at most): 

(1) Only John/John or Bill/two students/at most two students/the students/#every 
student/#at  least two students/#less than two students came. 

This points to the fact that only-NPs are equivalent to exception NPs of a certain sort (only 
John being synonymous with nobody except John). The NP following only plays the same 
role as the EP-complement in an exception NP. Thus, the two phenomena may ultimately 
fall under the same explanation. 
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(68)a. #every American except every Texan 
b. every American except the Texans 

(69)a. #every boy except less than five 
b. every American except at most four 

6.2. Disjoined Complements 

Exception constructions also allow for disjoined complements: 

(70) a. Every boy except John or Bill got an A. 
b. I will vote for anybody except a racist or a terrorist. 

It is tempting to simply carry over the account of quantified EP-comple- 
ments to disjoined ones. But unfortunately this would give wrong results 
for both (70a) and (70b). As the reader may verify by applying (65), such 
an account would render (70a) equivalent to every boy except John or 
every boy except Bill or every boy except John and Bill got an A (given 
the standard assumption that disjunction is inclusive). However, (70a) 
does not allow for a reading in which both John and Bill got an A. 
Moreover, the account could not apply to the most prominent, conjunctive 
reading of (70b), where it is equivalent to 'I will vote for anybody except 
any racist and any terrorist'. 

A solution to the problem with disjunction may be found in the approach 
to disjunction scope of Higginbotham (1991). According to this account, 
or, when coordinating NPs, forms the restriction of a tacit wide scope 
quantifier (or overt either) which is either an existential quantifier (in 
(70a)) or a universal quantifier (namely in generic or modal contexts such 
as (70b)). On such an account, (70a) is to be paraphrased as (71a), and 
(70b) as (71b): 

(71)a. For some x [x = John or x = Mary], everybody except x got an 
A. 

b. For every x [racist(x) or terrorist(x)], I will vote for anybody 
except x. 

(71a) is adequate for (70a). But unfortunately, (71b) is not equivalent to 
(70b). Suppose there is both a racist a and a terrorist b (where a :k b), 
then (71b), unlike (70b), is false, since 'I will vote for anybody except a' 
and 'I will vote for anybody except b' cannot both be true. 

The source of this difficulty may not lie so much in the account of or, 
but rather in the view of generic sentences, which (70b) is an instance of. 
The difficulty disappears if one adopts a different, situation-based view of 
generic sentences (cf. Moltmann 1992b). On this view, generic sentences 
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such as (70b) do not involve quantification over individuals, but rather 
over situations, which may be restricted by appropriate parts of the sen- 
tence or by the nonlinguistic context. In particular, in (70b), a racist or a 

terrorist as in (70b) may form the restriction of the generic operator 
ranging over situations. Crucially, given that these situations may be sub- 
ject to further contextual restrictions, they may all contain only a terrorist 
or only a racist. So on this view, (70b) can be paraphrased as 'for any 
situation s such that there is a racist in s or a terrorist in s, I will vote for 
anybody except the racist or the terrorist in s'. 

7. A P P L Y I N G  THE A N A L Y S I S  TO C L A U S A L  

E X C E P T I O N  C O N S T R U C T I O N S  

There are a number of exception constructions in English in which the 
complement of except is a clause. In this section, I want to show how the 
semantic analysis of exception constructions that I have proposed can be 
applied to some important types of clausal exception constructions. 

In the first construction, except is followed by a that-clause, as in (72a), 
or more generally by a subordinate clause such as in (72b); in the second 
construction, except is followed by a clause without complementizer, as 
in (72c) and (72d); the third construction consists of unless-clauses and 
except/f-clauses, as in (72e): 

(72) a. John knows everything except that Mary left the country. 
b. John is always happy except when it is raining. 
c. Every student got an A, except John got a B. 
d. Every man danced with every woman except John kicked Mary. 
e. John won the race unless Bill won it/except if Bill won it. 

(72a) and (72b) are easy. The EP in (72a) specifies a fact as the exception 
and applies to a quantifier ranging over facts. In (72b), the EP specifies 
time intervals as the exceptions and applies to a quantifier ranging over 
such intervals. 

Clausal exception constructions of the type in (72c) and (72d) are more 
complicated. Generally, they can be analysed by construing an implicit 
universal quantifier ranging over propositions at the level of implications. 
Let us make the not implausible assumption that what every student 
except John got was only an A (in the relevant situation). Then (72c) 
without the EP can be paraphrased as follows: for every proposition of 
the form 'x got y', where x is a student, it is the case that y is an A. Thus, 
the proposition expressed by (72c) without the EP is as in (73a). This 
proposition can systematically be mapped onto a proposition with a univer- 
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sal quantifier ranging propositions to which the EP can apply as in (73b), 
where 'p' is a variable ranging over proposition: 

(73)a. [every student]({x I [[an A]({y [ [got](x, y)})}) 
b. ([except]({[John got a B]}))(EVERY({p I 3xy([student](x) & 

p = ^[got](x, y) & true(p))]}))({pl3xy([student](x) & [A](x) 
& p = ^[got](x, y) & TRUE(p))} 

Similarly, the proposition expressed by (72d), as roughly given in (74a), 
can be mapped onto the proposition represented in (74b) with a universal 
quantifier ranging over propositions. C here restricts R to relevant re- 
lations between men and women: 

(74)a. EVERY([man])({y l (EVERY([woman])({y l [danced 
with](x, y)})}) 

b. ([except]({[John kicked Man]}))(EVERY({p I 3Rxy(C(R ) & 
[man](x) & [woman](y) & p = ^R(x, y) & true(p)}))({p I 
3xy([man](x) & [woman](y) & p = "[danced with](x, y) & 
TRUE(p))}) 

This analysis, in a way, treats (72c) and (72d) as focus constructions with 
an A being in focus in (72c) and danced with in (72d) (cf. Rooth 1985). 
If an A and danced with are loci, we get background meanings (Rooth's 
p-sets), which provide the ranges for the universal propositional quantifiers 
in (73b) and (74b). 

A good semantic framework for analysing unless-clauses as in (72e) is 
Data Semantics (cf. Veltman 1984, 1986). 24 Data Semantics uses as a 

24 There is also a way of treating unless-clauses in terms of truth-value functions (as was 
suggested to me by Jeroen Groenendijk,  p.c.). (See Groenendijk/Stokhof (1984, Chapter  5) 
for a formally related t reatment  of answers with yes and no and with conditionals.) Unless 
clauses, on this account, apply to an implicit sentential operator,  namely an implicit affirm- 
ative operator  'yes' (which corresponds to Ap[p]). The unless-clause in (72e) (and more 
perspicuously the/f-clause)  expresses Ap[Bill won it ~ p]. Extensionally, ,~p[p] corresponds 
to the singleton set of the truth value ' t rue ' ,  i.e. {1} (=  {{{ }}}). Ap[Bill won it---~ p] corre- 
sponds to {1} if Bill won the race and to {1, 0} if Bill did not  win the race. The identification 
of the affirmative operator  and the unless-clause with a set of truth values allows subtraction 
and addition to apply as with other  exception constructions. 

If Bill won the race, the unless-complement will denote {1}; hence every element in {1} is 
subtracted from every element in {1}. This gives the set containing just { }\{ } (=  { }), that  
is, the set {0}. Thus, it has to be  the case that  John did not  win the race. 

Now suppose that  Bill did not win the race. Then the unless-clause denotes {0, I}. Appli- 
cation of W to thi~ set (given that  the relevant universe consists in 0 and 1) yields the set 
{0}). Addit ion of this set to the elements in {1} yields (1 + 0} = {1}. Hence,  it has to be the 
case that  John won the race. 

However,  for the same reasons as for indicative conditionals, a truth-functional analysis 
of unless-clauses will ultimately not  be adequate.  
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primitive the epistemic notion of an information state, that is, a set of 
facts which represent the current information shared by speaker and ad- 
dressee. Data Semantics uses a structure (S, <) ,  where S is a set of 
information states and < a partial ordering among the elements of S. A 
sentence S holds relative to an information state s (s ~ S) just in case S is 
true on the basis of the evidence available in s. On this approach, the 
semantics of indicative conditionals is as follows: a sentence of the form 
'if P, Q' is true in an information state s iff for any extension of s in which 
P holds, Q holds as well: 

(75) s ~ I f  P, Q iff for any extension s' of s, either not s' ~ P or 
s ' ~ Q .  

In order to account for unless- and except/f-clauses, I will use a logical 
property shared by many propositions (including the propositions that 
John won) namely persistence. A proposition p is persistent iff the follow- 
ing holds: If p is true in an information state s, then p is true in every 
extension of s. What is crucial for the treatment of unless-clauses is that 
a proposition which is persistent allows a universal quantifier ranging over 
the extensions of s to be construed at the level of implications. The idea 
is that unless-clauses act as EPs applying to this quantifier. If the clause 
is of the form unless Q, then it takes away the extensions of s at which 
Q holds. Thus, we have: 

(76) s ~ P unless Q 
iff ([except]({s[s ~ Q})) (EVERY({s' ] s < s'}) ({s' I s' ~ P}). 

As a corollary of this proposal, we derive a difference between sentences 
with must as an epistemic modal (which allow for unless-clauses) and 
sentences with epistemic may (which do not): 25 

(77)a. John must have won the race unless Bill won it. 
b. # John  may have won the race unless Bill won it. 

The semantics of epistemic may and must in data semantics is as follows 
(of. Veltman 1986): 

(78)a. s ~ may P iff for some s', s < s', s' ~ P. 
b. s ~ must P iff for every s', s < s', there is some s", s' < s" such 

that s" ~ P. 

25 It--should be emphasized that the analysis only accounts for epistemic modals. Unless- 
clauses are fine with may as a deontic modal,  as was pointed out by a reviewer: 

( i )  You may join the army, unless you are under-age or openly gay. 
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That is, a sentence may P is true in an information state s if P is true in 
some extension of s, and a sentence must P is true in an information state 
s if P is true in some extension of every extension of s. Obviously, must 
P is persistent, but may P is not. 

Let me summarize. In this part of the paper, I have presented a new 
semantic analysis of exception constructions which overcomes the short- 
comings of previous proposals. This analysis was first presented in its basic 
form and shown to apply to a variety of exception constructions with 
different nominal and clausal EP-associates and EP-complements. One 
important further assumption of the account was that EPs may be evalu- 
ated not at the level of the compositional analysis of sentence meanings 
proper, but rather at a level of implications. In those cases, only a 'restruc- 
turing' of the meaning of the sentence without the EP yields an appropriate 
semantic object for the EP to operate on. 

P A R T  II .  P O L Y A D I C  Q U A N T I F I C A T I O N  IN 
E X C E P T I O N  S E N T E N C E S  

The exception constructions which I have discusssed so far all had in 
common that the quantifier that the EP associated with was a monadic 
quantifier, a set of sets. In this part of the paper, I will show that EPs 
may also take as their associates polyadic quantifiers, that is, quantifiers 
that are sets of relations. 

Polyadic quantification with EPs manifests itself in two ways. First, EPs 
may specify an n-tuple of entities (or a set of n-tuples) as the exception. 
This holds for three different types of EPs that can be found in English: 
except-phrases with a construction similar to Gapping, a construction with 
multiple occurrences of else, and otherwise. Second, there are data where 
the constraint on the EP-associate seems not to be a local restriction that 
has to be met just by a single NP, but rather a global restriction, which 
may be met only by the larger linguistic context in which the NP occurs. 
I will argue that those constructions also involve a polyadic quantifier as 
the true associate of the EP. 
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1.  P O L Y A D I C  Q U A N T I F I C A T I O N  WITH P S E U D O G A P P E D  

E X C E P T I O N  P H R A S E S  

1.1. The Data 

In many languages, EPs may occur with what seems to be Gapping. Since 
this construction, however, is distinct from true Gapping, I will call it 
'Pseudogapping'. 26 In this construction, except is followed by a sequence 
of NPs or PPs: 27'28 

26 I use the term 'Pseudogapping' here in a nonstandard way. Commonly, the term is used 
for constructions such as (1): 

(1) John ate more apples than Mary did pears. 

27 Exception constructions with Pseudogapping as in (1) exhibit certain characteristic proper- 
ties of Gapping; in other respects they differ from Gapping. For example, like in true 
Gapping constructions, the constituents in the EP-complement have to be major constituents 
(i.e. daughters of IP or VP), as seen in the following examples from German: 

(1)a. well jeder Student an jeder Universitaet studiert hat, ansser Hans * (am) MIT 
because every student at every university studied has except John (at) MIT 

b. weil jeder das Geheimnis yon jedem kennt, ansser Hans * (das Geheimnis) 
von Maria 
because everybody the secret of everybody knows except John (the secret) of 
Mary 

Furthermore, in the exception constructions with Pseudogapping, 'extraposition' of the EP 
is obligatory: 

(2)a. *Jeder Mann ausser Hans mit Maria hat mit jeder Frau getanzt. 
every man except John with Mary has with every woman danced 

b. *Jeder Mann hat mit jeder Frau ansser Hans mit Maria getanzt. 
every man has with every woman except John with Mary danced 

Pseudogapping with EPs, however, differs from Gapping in crucial respects. First of all, 
unlike true Gapping, the constituents associated with the exception expression need not be 
separated by an intonation break. Second, unlike true Gapping, Pseudogapping with EPs 
does not require focusing of the 'correlates' and the 'remnants'. Finally, Pseudogapping with 
EPs is subject to stricter locality conditions than true Gapping. In the latter case, the 
remnants may be separated by a finite clause boundary with only a mild degradation in 
acceptability. But this is impossible with Pseudogapping, which strictly prohibits the corre- 
lates from being separated by a clause boundary: 

(4)a. *Every man said that he danced with every woman except John with Mary. 
b. ?John said that he danced with Sue and Joe with Mary. 

28 English disallows a sequence of two or more NPs following except. Only the first phrase 
may be an NP; any other phrases have to be PPs or adverbs: 

(1)a. *Every man met every woman except John Mary. 
b. *Every man showed every woman every book except John Mary the bible. 
c. Every man danced with every woman in every room except John with Mary 

in the kitchen. 

This restriction seems to be a peculiarity of English, rather than being a general fact about 
the exception construction itself. There are languages, for instance German, in which the 
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(1)a. Every man danced with every woman except John with Mary. 
b. No man danced with any woman except John with Mary. 
c. Every man danced with every woman every day except John 

with Mary yesterday. 
d. No man ever danced with any woman except John yesterday 

with Mary. 

What is crucial about the exception sentences in (1) is that they are not 
generally equivalent to clauses where multiple EPs associate with single 
phrases. Thus, (la) is not equivalent to (2a), and (lb) is not equivalent 
to (2b): 

(2) a. Every man except John danced with every woman except Mary. 
b. No man except John danced with any woman except Mary. 

(la) has different truth conditions from (2a). For instance, (la) implies 
that John did not dance with Mary, whereas (2a) is compatible with John 
having danced with Mary. Furthermore, (la) implies that every man other 
than John danced with Mary, and every woman other than Mary danced 
with John, whereas (2a) implies that every man other than John did not 
dance with Mary and every woman other than Mary did not dance with 
John. 

The difference in truth conditions follows if pseudogapped exception 
constructions are not interpreted by multiple exception operations on 
monadic quantiliers, but rather by a single exception operation on a poly- 
adic quantifier. That is, in (la), the semantic operation associated with 
except does not subtract John and Mary from the set in the denotations 
of [every man] and [every woman] individually, but rather subtracts the 
pair (John, Mary) from the relations in a dyadic quantifier, namely the 

restriction does not hold: 

(2) Jede Frau sah jeden Mann ausser diese Frau diesen Mann. 
every woman (NOM) saw every man (Acc) except this (Nora) this man (Acc) 

I do not have an answer to the question why the restriction holds in English and not in 
German.  At  first sight, it looks like the difference between English and German has to do 
with conditions on Case assignment. In English, it appears as if an NP-complement of except 
has to receive case from except, which can assign case to only one NP, whereas in German 
an NP-complement of except may, in some way, receive case from the main verb. 

However,  this explanation becomes less plausible in view of the fact that phrases intro- 
duced by even in a parallel construction display the same constraint: 

(3)a. Every man danced with every woman even John with Mary. 
b. *Every man admired every woman even John Mary. 

Even certainly does not assign Case; NPs modified by even still need case from some other 
case-assigning category. 
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quantifier which can be considered the denotation of the (discontinuous) 
sequence (every man, every woman) (see Section 5 for more discussion). 
This quantifier is a universal quantifier ranging over all pairs consisting of 
a man and a woman; more precisely, it is the set of all relations containing 
the Cartesian product [men] x [women] as a subset. 

In the semantic evaluation of the exception constructions in (1) basically 
the same conditions and operations apply as applied in the monadic case, 
except that they involve n-tuples and relations, rather than individuals 
and sets. Thus, the EP except John with Mary specifies the pair (John, 
Mary) as the exception, which satisfies the Homogeneity Condition by 
being included in every relation in the dyadic quantifier [(every man, every 
woman)]; hence subtraction can apply and take away (John, Mary) from 
every relation in that set, yielding as the denotation of the sequence (every 
man, every woman, except John with Mary) the set {R\{(John, Mary)} [ 
R E [(every man, every woman)]}. The meaning of (la) then is: 29 

(3) [danced with] E{R\(John, Mary)} [ R E  [(every man, every 
woman)]} 

Before going further into the issue of polyadic quantification with excep- 
tion constructions, I have to discuss a potential alternative analysis of the 
data in (1), which is not based on polyadic quantification. 

29 As was pointed out to me by Stanley Peters, exception sentences with symmetric predicates 
such as resemble and even dance with may be a problem for this analysis. Generally, if a 
pair (x, y) is in the extension of resemble or dance with, then also the pair (y, x) in the 
extension. Hence if (John, Mary) is an exception with respect to the claim that every man 
danced with every woman, then also (Mary, John) is an exception. So both pairs should be 
taken away from the relations in the quantifier (EVERY MAN, EVERY WOMAN). But 
this would require that John with Mar), in those cases actually denotes the set {(John, Mary), 
(Mary, John)}. Two problems then arise. First, the Condition of Inclusion would be violated 
since Mary is not a man and John not a woman. Second, John with Mary would then have 
to have a different denotation when the predicate is not symmetric as in (1): 

(i)  Every man was annoyed with every w-oman except John with Mary. 

Clearly, compositionality should not allow the denotation of John with Mary to depend on 
the predicate in the main clause. Thus, it is better to keep the asymmetric denotation for 
John with Mary. Applying the exception operation to the converse pair in the case of 
symmetric predicate is perhaps best considered a matter of accommodation, rather than part 
of what exception constructions mean. 

One might think of another way of getting around the problem with symmetric predicates. 
It has been noted that so-called symmetric predicates are not always symmetric, for instance, 
John may have danced with a doll, but the doll could not have danced with John. However, 
the potential asymmetry of 'symmetric' predicate does not solve the problem. The semantics 
of EPs involves only extensions of predicates. In a universe in which there are only equally 
active people, the extension of dance may be completely symmetric; hence the problem 
remains. 
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1.2. An Alternative Analysis as Clausal Exception Constructions 

The examples in (1) could be considered standard cases of Gapping and 
as such they could be analysed as clausal exception constructions in which 
the EP specifies a proposition as the exception and the matrix sentence 
represents an implicit universal quantification over propositions. On this 
view, (la) would be a reduced form of (4a), which could be evaluated as 
in (4b), with a negative universal quantifier ranging over propositions of 
a certain form: 

(4) a. 

b. 

No man danced with any woman except John danced with 
Mary. 
(([except]([John danced with Mary]))(NO({p ] 3x3y(man(x) & 
woman(y) & p = ^x danced with y)})))(TRUE) 

(4b) does not involve polyadic quantifiers; it only involves a monadic 
quantifier, which ranges over propositions. (4b), thus, suggests a general 
way of getting rid of polyadic quantification for the analysis of the data 
in (1). 

However, an analysis along the lines of (4a) and (4b) is not always 
possible. It is possible only when the quantifier is negative and does not 
work, for example, for (la). If we take (la) to be a reduced form of (Sa), 
where only the verb has been supplied, we get nonsense; only (5b), where 
in addition negation has been supplied, is an appropriate clausal equivalent 
of (la): 

(5) a. 

b. 

#Every man danced with every woman except John danced with 
Mary. 
Every man danced with every woman except John did not 
dance with Mary. 

Clearly, whether implicit negation is present in the gap or not cannot 
depend on whether the quantifier in the matrix clause is positive or nega- 
tive. No standard case of Gapping patterns this way (cf. Moltmann 
1992a).3° 

There are other arguments against generally eliminating polyadic quan- 
tiflers as a device of analysing exception constructions as in (1). One 
of them is that the same semantic phenomenon occurs, though slightly 
marginally, with free EPs containing conjoined NPs or PPs, as in (6): 

(6) a. 
b. 

Except for John and Mary, no man praised any woman. 
Except for John and Mary, every man resembles every woman. 

30 Nam (1991) analyses even ordinary Gapping in terms of polyadic quantification. 
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A clausal analysis of John and Mary in these examples is highly implausible 
syntactically. The only natural analysis of (6a) and (6b) is one in which 
John and Mary refers to the pair consisting of John and Mary and the EP 
associates with the dyadic quantifiers denoted by (no man, any woman) 
and (every man, every woman). Thus, for the construction in (6), polyadic 
quantification is needed in any case. 

Another argument against generally reducing exception constructions 
(which might involve polyadic quantifiers) to clausal exception construc- 
tions comes from the multiple 'else'-construction, which explicitly marks 
the quantifiers that form the polyadic quantifer that is the EP-associate. 
This will be discussed in Section 2. 

Since I have rejected an analysis of the exception constructions in (1) 
as involving true Gapping, the question arises: what is the syntactic struc- 
ture of the phrases following except? In this paper, I have to leave this 
question open. The only assumption I am making is that what follows 
except in a pseudogapped EP does not have an interpretation as a proposi- 
tion, but rather an interpretation as an n-tuple of entities (or better, the 
generalized quantifier corresponding to that n-tuple). Thus, John with 
Mary in (1) will denote the pair consisting of John and Mary (or rather 
the generalized quantifier corresponding to that pair). 31 

1.3. Polyadic Quantifiers as the EP-associates 

Let me now turn to the general issue of polyadic quantification. Polyadic 
quantifiers have been the subject of extensive investigation from a logical 
point of view within the theory of generalized quantifiers (cf. van Benthem 
1989, Keenan 1987a, 1992, Westerstahl 1992). But it has been a matter 
of dispute whether natural languages exhibit true instances of polyadic 
quantification. Among the constructions that have been regarded as cases 
of polyadic quantification are multiple wh-questions (cf. Higginbotham/ 
May 1981), Bach-Peters sentences (cf. Higginbotham/May 1981), same 
and different in certain constructions (cf. Keenan 1987a, 1992), correlative 
constructions in Hindi (cf. Srivastav 1991), and adverbial or nominal 
quantifiers as involving unselective binding (cf. Lewis 1972, Heim 1982, 
Chierchia 1992). The exception constructions under discussion add a clear 
case of polyadic quantification in natural language to that list. 

31 This is also the way Groenendijk and Stokhof (1984) analyse gapped answers to multiple 
wh-questions, as in (1): 

(1) A: Who saw whom? 
B: John Mary, and Sue Bill. 
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Let me introduce some relevant notions concerning polyadic quantifiers. 
In the theory of generalized quantifiers, a quantifier such as the denotation 
of every man can be considered a set of sets (the view adopted in the 
present paper). Such a quantifier is of type <1), a monadic quantifier. A 
quantifier of type <2>, a dyadic quantifier, is a set of binary relations; a 
quantifier of type <3>, a triadic quantifier, is a set of ternary relations, and 
SO o n .  

As a general fact, any sequence of monadic quantifiers can be construed 
as a single polyadic quantifier. For instance, the quantifier sequence 
(EVERY MAN, EVERY WOMAN) can be defined as the dyadic quan- 
tifier in (7a). This dyadic quantifier can be defined in terms of monadic 
quantifiers as in (7b), and similarly for the quantifier (NO MAN, ANY 
WOMAN) in (7c): 

(7)a. (EVERY MAN, EVERY WOMAN)(R) iff 
MAN x WOMAN C_ R 

b. (EVERY MAN, EVERY WOMAN) = {R [ EVERY 
MAN({x [ EVERY WOMAN({y ] ix, y) E R})})] 

c. (NO MAN, ANY WOMAN) = {R] NO MAN({x I ANY 
WOMAN({y ] ix, y) E R})})} 

The more general definition that is relevant for the present purposes is 
given in (8): 

(8) Let Q1, Q2 . . . . .  Qn be quantifiers of type/1). 
(Q1 . . . .  , On)(R) ~ Ql({xl I Q2({x2 I . . .  Qn({x~ I 
(xi . . . . .  x~) ~ R})}) for an n-ary relation R. 

Polyadic quantifiers cannot always be defined in terms of monadic quanti- 
tiers in the way given in (8). Those that can are called 'reducible polyadic 
quantifiers' (cf. Keenan 1987a, 1992). The EPs in (1) apply to reducible 
polyadic quantifiers. But they yield unreducible polyadic quantifiers. This 
means that the quantifier denoted by <every man, every woman) except 
John with Mary cannot be defined in terms of monadic quantifiers as in 
(7b) (cf. Moltmann, to appear a). The reason that polyadic quantification 
is involved in the examples in (1) is not that the initial polyadic quantifier 
cannot be defined in terms of monadic quanfifiers as in (8), but rather the 
fact that what is specified as the exception under the current analysis can 
be an exception only with respect to a set of relations, not a set of sets, 
and the fact that the resulting quantifier is unreducible. 

The possibility of interpreting several NPs in a sentence as a polyadic 
quantifier raises several questions. First of all, does such an interpretation 
require a noncompositional assignment of meaning to phrases that do not 
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form a constituent? Second, under what circumstances can several NPs in 
a sentence be interpreted as a polyadic quantifier? I will address these 
questions later in Section 8. At this point, I will simply assume that any 
set of NPs in a minimal clause with an appropriate scope order can be 
evaluated as a polyadic quantifier. 

2. POLYADIC QUANTIFICATION WITH ANAPHO:RIC 

EXCEPTION CONSTRUCTIONS 

There are two other exception constructions that display polyadic quanti- 
fication. Both of them involve anaphoric exception expressions. The first 
one involves the exception expression else. Else as in (9) is a connected 
anaphoric exception expression (cf. Moltmann 1992a): 

(9)a. John did not come. Everybody else came. 
b. John came. Nobody else came. 

In (9a, b), else anaphofically refers to 'John' in the preceding sentence 
and basically means 'except John'. 

Keenan (1992) has observed with the example in (10a) that multiple 
occurrences of else in a sentence can lead to an interpretation not equiva- 
lent to an interpretation based on interpretations of single occurrences of 
else. This interpretation of (10a) involves polyadic quantification, as do 
the corresponding interpretations of (lOb) and (10c): 

(lO)a. John praised Mary. Nobody else praised anybody else. 
b. John did not praise Mary. Everybody else praised everybody 

else. 
c. John gave Mary the book in the library, and nobody else gave 

anybody else anything else anywhere else. 

The second sentence of (10a) has two readings. In the first reading, it can 
be understood as 'nobody other than John praised anybody other than 
Mary'. In this reading, it might describe a situation in which everybody 
other than John praised Mary, and John was the only one who praised 
somebody other than Mary. However, this is not the most plausible read- 
•ng of the second sentence of (10a), given the sentence that precedes it. 
In the more natural reading, it means that no pair other than the pair 
consisting of John and Mary stands in the praising relation. This reading 
involves polyadic quantification. What the two occurrences of else in this 
reading do is add the pair consisting of John and Mary to the relations in 
the dyadic quantifier (NOBODY, ANYBODY). In (10b), the same pair 
is subtracted from the relations in the dyadic quantifier (EVERBODY, 
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EVERYBODY). In (10c), the four occurrences of else in the relevant 
reading have the joint effect of subtracting the quadruple (John, Mary, 
the book, the library) from the relations in the quantifier (NOBODY, 
ANYBODY, ANYTHING, ANYWHERE),  which is a set of four-place 
relations. 32 

As in the case of exception constructions with Pseudogapping, I will 
not say much about the compositional analysis of sentences with the 
multiple else-construction besides assuming that several occurrences of 
else may be jointly interpreted as an anaphoric EP. 

There is another anaphoric exception construction besides the 'multiple 
else-construction' that may involve polyadic quantification, namely other- 
wise, which is a free exception expression. (I.e., it is restricted to adverbial 
syntactic position.) Otherwise in ( l la ,  b) has essentially the same meaning 
as else. 

( l l )a .  John did not come. Otherwise, everybody came. 
b. John came. Otherwise, nobody came. 

Otherwise may apply to a polyadic quantifier, but in such cases, unlike 
else, it need to occur only once in the sentence: 

(12)a. John danced with Mary. Otherwise, nobody danced anybody. 
b. John did not dance with Mary. Otherwise, everybody danced 

with everybody. 

The second sentence of (12a) has two readings. On one reading, which is 
given in (13a), otherwise relates only to nobody. On the second reading, 
(12a) is equivalent to (13b): 

(13)a. Nobody except John talked about anybody. 
b. Nobody danced with anybody except John with Mary. 

On the second reading, otherwise associates with the dyadic quantifier 

32 How can the multiple occurrences of else act together as a single EP? It is suggestive that 
the multiple 'else'-construction classifies together with the 'resumptive use' of quantifiers in 
English. This use of quantifiers, where several occurrences of a quantifier act together as a 
single quantifier ranging over n-tuples, was noted by May (1985, 1989) with examples such 
as in (1), where in ( lb)  each student might have asked less than many questions: 

(1)a. Nobody loves nobody. 
b. Many students asked many questions. 

The parallel to the resumptive quantifiers is not unproblematic, though. The resumptive use 
of quantifiers seems to be rather marginal and for many quantifiers not available at all, 
whereas the multiple 'else'-construction is fully grammatical. 
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(NOBODY, ANYBODY). Two readings of the same sort are found for 
(12b). 

Note that unlike pseudogapped except-phrases and the multiple else-con- 
struction, otherwise in the polyadic-quantification reading does not for- 
mally indicate which quantified NPs form the associated polyadic quan- 
tifier. This means that the evaluation of several quantifier occurrences in 
a sentence as a polyadic quantifier must be available already on the basis 
of the ordinary syntactic structure of the sentence. I will come back to 
this issue in Section 5. 

3. THE FORMAL ANALYSIS OF EXCEPTION CONSTRUCTIONS 

WITH POLYADIC QUANTIFIERS 

In order to generalize my semantic analysis of exception sentences with 
monadic quantifiers to exception sentences with polyadic quantifiers, let 
me first note that, as in the case of monadic quantifiers, the EP-comple- 
ment in the polyadic quantification case need not specify a single n-tuple, 
but instead a set of n-tuples, as the exceptions, as in (14): 

(14)a. Every man danced with every woman except John with Mary 
and Bill with Sue. 

b. John danced with Mary, and Bill danced with Sue. Nobody 
else danced with anybody else. 

c. John danced with Mary, Bill with Sue, and Tom with Claire. 
Otherwise, nobody danced with anybody. 

The exception set that (else, else) in (14b) stands for is {(John, Mary), 
(.Bill, Sue)}, and the one that otherwise in (14c) stands for in ({John, Mary), 
(Bill, Sue), Tom, Claire)}. 

Furthermore, in exception constructions with a polyadic quantifiers, 
except may also take quantified complements, as in (15). The data with 
else and otherwise in (16) show the same point: 

(15)a. Every man danced with every woman except one professor 
with one student. 

b. Every man danced with every woman except at most two pro- 
fessors with at most two students. 

(16)a. Two men danced with two women, and nobody else danced 
with anybody else. 

b. At most two men danced with at most two women. Otherwise, 
nobody danced with anybody. 
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Thus, the denotation of pseudogapped EP-complements should be con- 
strued as a generalized polyadic quantifier, rather than simply an n-tuple 
or a set of n-tuples. The denotation of the EP-complement in (15a), 
for example, will be the dyadic quantifier (ONE PROFESSOR, ONE 
STUDENT). 

The semantics of for-exception constructions involving polyadic quanti- 
tiers can be given as a straightforward generalization of the monadic case. 
In (14a) and (15a), the complements of except will have the denotations 
given in (17a) and (17b): 

(17) a. 

b. 

[John with Mary and Bill with Sue] = {R I (John, 
Mary) ~ R} n {R I (Bill, Sue) E R} 
[one professor with one student] = {R [ [one professor]({x I 
[one student]({y I (x, y) E R})}) 

The operation W applies to these sets of relations with the following 
results, where p~, P2,. • • are the relevant professors and Sa, s2 . . . .  the 
relevant students: 

(18)a. 

b. 

W([John with Mary and Bill with Sue]) = {{(John, Mary), 
(Bill, Sue)}} 
W([one professor with one student]) = {{(pl, sl)}, 
{(P2, s2)},. . .  } 

Pointwise checking of the Homogeneity Condition can now apply as well 
as pointwise application of the exception operation, yielding the following 
denotations for (14a) and (15a): 

(19)a. 

b. 

[(every man, every woman) except John with Mary and Bill with 
Sue] = {R\{(John, Mary), (Bill, Sue)} [ R E [(every professor, 
every student)]} 
[(every man, every woman) except one professor with one stu- 
dent]= U {R\R'  [ R~[(every 

V '  ~ W ([one professor with one student]) 

man, every woman)]} 

These denotations are obtained by generalizing the semantic operation of 
exception constructions with monadic quantifiers to exception construc- 
tions with polyadic quantifiers as in (20): 
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(20) ([except]M([(NP~,..., NP')]M))([(NPI, . . . .  NPn)] M) = 
= U {R\R' [ R E [(NP1 . . . . .  NPn)] M} if 

R' EW([(NP'I ..... nPn)] M) 

for every appropriate extension M' of M, for every 
R ~ [ (NP1, . . . ,  NPn)] M', and for every 

t v M ' v vv R ~ W ( [ ( N P 1 , . . . , N P ' ) ]  ) , R  __C_R. 
U {R U R' I R ~ [ (NP1, . . . ,  NPn)] M} if 

R'~Wa<NPI ..... Ne'n>l M) 
for every appropriate extension M' of M, for every 
R ~ [(NP1, . . . .  NPn)] M', and for every 
R E W( [ (NP ; , . . . ,  NP')] M'), R' A R" = 0. 
undefined otherwise. 

How is the Quantifier Constraint satisfied by polyadic quantifiers as EP- 
associates? Clearly, whether or not a sequence of NPs denotes a gen- 
eralized quantifier that satisfies the Quantifier Constraint is independent 
of whether the NPs by themselves denote universal or negative universal 
quantifiers. For example, the quantifier (NO MAN, EVERY WOMAN) 
is an iteration of monadic quantifiers which do satisfy the Quantifier 
Constraint, but this quantifier itself does not allow for EPs: 

(21) #No man danced with every woman except John with Mary. 

But the unacceptability of (21) follows from applying the Homogeneity 
Condition to the polyadic quantifier (NO MAN, EVERY WOMAN). In 
any model with some other woman besides Mary, (NO MAN, EVERY 
WOMAN) will contain a relation R containing (John, Mary) and a relation 
R' not containing (John, Mary) (for instance, the empty relation). 

4. G L O B A L  S A T I S F A C T I O N S  AND V I O L A T I O N S  OF THE 

C O N S T R A I N T  ON THE E P - A s S O C I A T E  

4.1. The Data 

I now turn to a new set of data which I consider further evidence that 
EPs apply to polyadic quantifiers. These data, basically discovered by 
Hoeksema (1989, 1991), involve a satisfaction of the constraint on the 
EP-associate not by a single NP (requiring the NP to denote a (negative) 
universal), but rather by the larger context in which the EP-associate 
o c c u r s .  

The relevant phenomena divide into two kinds. The first kind of data 
involve EPs that associate with indefinite NPs, which occur in the imme- 
diate scope of a negator or a negative universal quantifier. Data of the 
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type in (22a) and (22b) were given by Hoeksema; further data are given 
in (22c)-(22f): 

(22) a. 
b. 

No man danced with any woman except with Mary. 
John did not see any woman except Mary. 

c. Today no guide showed any visitor any painting except the 
Mona Lisa. 

d. Never did any student read any book except this novel. 
e. John gave a flower to Mary. Nobody else gave a flower to 

anybody else. 
f. John once sent a postcard to Mary. But he never sent anything 

else to anybody else. 

The second kind of data involve universal quantifiers that do not license 
an EP. There are two contexts in which a universal quantifier does not 
license an EP. In the first context, the universal quantifier is in the scope 
of negation: 

(23)a. *Except for John, not everybody was there. 
b. *Except for you, I did not meet everybody. 

In the second context, the universal quantifier is in the scope of an indefi- 
nite, as was noted by Hoeksema (1991) with (24a) and (24c): 

(24) a. 
b. 
C. 

*Except for this Cadillac, someone damaged every car. 
Except for this Cadillac, Mary damaged every car. 
Except for John, every professor introduced some applicant to 
every student. 

(24a) is unacceptable, due to the occurrence of the quantifier someone ,  

as the contrast with (24b) shows. In (24c), the EP can associate only with 
the first universal quantifier. That is, (24c) is possible only when John is 
the exceptional professor, not the exceptional student. 

However, the restriction against free EPs associating with a universal 
quantifier in the scope of an indefinite does not hold for all positions in 
which the EP may occur. Furthermore, it does not hold for connected 
EPs. Thus, the following examples are all acceptable in the relevant 
interpretation: 

(25) a. 
b. 

(26) a. 

Somebody damaged every car except for this Cadillac. 
Every professor introduced some applicant to every student 
except for John. 
Somebody damaged every car but/except this Cadillac. 
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b. Every professor introduced some applicant to every student 
but John/except John. 

Without going into further details, the data given in this section indicate 
that the constraint underlying the Quantifier Constraint is not generally a 
local condition on the NP associated with the EP, but rather a constraint 
that may be satisfied only by the larger context in which that EP occurs. 
But how the constraint is satisfied depends on whether the EP is free or 
connected and where it occurs in the sentence. In the next section, I will 
show that the data do not require abandoning the semantics of EPs that 
I have given (in particular the Homogeneity Condition), but rather can 
be handled within that very same account, namely in terms of polyadic 
quantification. 33 

4.2. An Explanation in Terms of Polyadic Quantification 

My explanation of the data in (22), (23) and (24) is as follows: here the 
quantifier the EP applies to is actually not the quantifier denoted by the 
associated NP, but rather a polyadic quantifier formed also from other 
quantifiers and operators in the sentence (even though the terms in the 
EP-complement may not correspond to the adicity of the quantifier). For 
example in (22a), the EP except Mary seems to specify only a single 

33 The data lead Hoeksema to take the semantic constraint  underlying the Quantifier Con- 
straint as a global semantic constraint  as follows: an exception sentence must be  closed under  
subdomains (or submodels) and under  unions of domains (or union of models): 

(1) If S is a sentence containing an EP, then (i) and (ii): 
(i) Closure under subdomains 

If X '  C X and [S]x = true, then [S]x, = true. 
(ii) Closure under union of domains 

If [Six = true and [Six, = true, then [S]xux, = true. 

In the case of indefinite NPs in the scope of negation, it is obvious that  closure under  union 
of domains and under  subdomains hold. Also (1) accounts for the case of EPs associating 
with universal quantifiers in the scope of an indefinite, as in (24a) and (24e) in the text. In 
this case, ( l i )  and (lii) are not  generally satisfied. ( l i )  does not obtain when the entities that  
would satisfy the indefinite NP are themselves taken away from the domain. (lii) is not 
satisfied when only distinct entities in the two domains satisfy the indefinite NP. 

(I) ,  however,  is problematic for exception sentences which contain an existential or 
downward-entail ing quantifier in the scope of the EP-associate such as: 

(2) Except  for Bill, every student solved exactly one/some/less than ten problems. 

If the domain changes with respect to the number  of problems, then,  clearly, (2) need not  
be true anymore.  Thus, ( i )  can be satisfied only under  additional assumptions concerning 
the domains relative to the interpretat ion of o ther  NPs in the sentence. 

Besides this empirical problem, there does not  seem to be any independent  motivation 
for why (1) should hold at all. 



272 FRIEDERIKE MOLTMANN 

individual as the exception, but nonetheless, on my account, it applies to 
a polyadic quantifier, namely the dyadic quantifier (NO MAN, ANY 
WOMAN). This quantifier is a negative universal quantifier and hence 
satisfies the Quantifier Constraint. 

This account of the data is not unmotivated, since, as we have seen, 
several NPs in an exception sentence may denote a polyadic quantifier 
anyway. The case of otherwise, moreover, showed that the formation of 
a polyadic quantifier is possible independently of whether the exception 
construction formally marks which quantified NPs contribute to the forma- 
tion of that quantifier. Thus, the fact that, in (22a), the EP contains the 
correlate (i.e. Mary) of only one of the participating quantified NPs (i.e. 
any woman) should not prevent no man and any woman from forming a 
dyadic quantifier. 

This account has to answer one crucial question, namely how can the 
EP except Mary appropriately apply to a dyadic quantifier? Let us look 
at what the EP in (22a) actually does. It specifies that there is one or 
more pairs (x, Mary), where x is a man so that x did not dance with Mary. 
Thus, the EP-complement should in some way stand for the quantifier 
(SOME MAN, MARY) so that the meaning of (22a) will be (28): 

(28) (([except](SOME MAN, MARY))(NO MAN, 
ANY WOMAN))([saw])) 

How could the EP-complement Mary stand for this quantifier? A first 
possibility is that Mary has an alternative denotation as a polyadic quan- 
tifier (via some variety of type-shifting), let us say {R [ 3x(MARY({y I 
(x, y) E R}))}. However, if Mary has this denotation, then the relations R 
in this set do not necessarily contain a pair consisting of a man and Mary, 
and to restrict the existential quantifier to men would dearly go against 
compositionality. 

I suggest an alternative account on which it is not the denotation of the 
EP-complement that is modified, but rather the exception operation. On 
this account, the exception operation will be a two-place operation. I 
restrict myself to formulating it only for the case of (22a) as in (29): 

(29) [except]([Mary], (NO MAN, ANY WOMAN)) = 
U{R',R' [ R e (NO MAN, ANY WOMAN)} 

R'E{X'x {Mary} I 3X(X'C_X • XeW(NO MAN))} 

In (29), except applies to a pair consisting of the entity Mary and a dyadic 
quantifier Q that is the iteration of the monadic quantifiers NO MAN and 
NO WOMAN and maps it to the dyadic quantifier Q' obtained from 
taking away from every relation R in Q the Cartesian product of a subset 
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of the witness set of NO MAN (i.e. a set consisting of at least one man) 
and the set {Mary}. 

The polyadic quantification account also handles the rest of the data in 
(22). For example, in (22d), the Quantifier Constraint is satisfied with 
respect to the quantifier (NEVER, ANY STUDENT, ANY BOOK), and 
the quantifier implicitly specified by the EP is (SOMETIMES, SOME 
STUDENT, THIS NOVEL). 

How does the polyadic quantification account apply to the cases where 
the quantifier with which the EP associates lies in the scope of a sentence 
negation, as in (22b)? It is natural to assume that whatever operation is 
responsible for the formation of polyadic quantifiers may also involve 
other operators such as negation. In fact, negation can be conceived of 
as a predicate holding of 0-place relations. Applying the scheme in (8) 
yields the following quantifier: 

(30) [(not, any woman)] = {V [ ~ANY WOMAN(V)} 

The polyadic quantification account also explains the global violations 
of the constraint on the EP-associate in the examples in (23), once one 
additional assumption is made (which I will come to below): in (23a) and 
(23b), (8) obligatorily applies to the negator and the quantified NP as a 
single quantifier. Thus, in (23a) and (23b), the associated quantifier will 
be -~EVERYBODY, which violates the Homogeneity Condition. 

(24a) and (24c) are accounted for in a similar way. The unacceptability 
of (24a) follows if except for this cadillac obligatorily associates with the 
dyadic quantifier (SOMEBODY, EVERY CAR), which violates the 
Homogeneity Condition. The unacceptability of (24c) follows under the 
assumption that except for John obligatorily associates with the triadic 
quantifier (EVERY PROFESSOR, SOME APPLICANT, EVERY STU- 
DENT), which does not satisfy the Homogeneity Condition. 

Why do the EPs in (23) and (24) obligatorily apply to those quantifiers, 
rather than simply the universally quantified NPs? Without going into a 
more thorough investigation, I suggest that whenever a free EP is in 
clause-initial position, it must associate with the polyadic quantifier formed 
by all the operators or quantified NPs in the clause, more precisely, all 
those operators or quantified NPs that the EP c-commands: 

(31) Condition on the association of for-EPs with polyadic quantifiers 
A free EP Y must associate with the polyadic quantifier de- 
noted by the maximal sequence of phases (XP1 . . . . .  XPn) such 
that Y c-commands XP1 . . . . .  and XPn. 

The data discussed in this section have a more general implication 
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concerning the formation of polyadic quantifiers in natural language. They 
imply that not all quantified NPs in a clause are obligatorily interpreted 
as polyadic quantifiers, as was suggested by May (1989). Rather than 
applying to the polyadic quantifier denoted by the maximal set of NPs in 
a clause, an EP, in an appropriate position, allows for a local satisfaction 
of the constraint on the EP-associate. 

5. THE SYNTACTIC BASIS FOR THE FORMATION OF POLYADIC 

QUANTIFIERS IN NATURAL LANGUAGE 

EPs with polyadic quantifiers raise an important question, namely how is it 
possible that two or more quantified NPs (possibly together with sentence 
negation) may together denote a polyadic quantifier without violating 
compositionality? In this section, I will give a speculative answer to this 
question. 

Let me recMl relevant cases of EPs applying to a polyadic quantifier: 

(32) a. 
b. 

Every man danced with every woman except John with Mary. 
(?)Every man danced with no woman except John with Mary. 

c. Every student always solved every problem except John yester- 
day the last one. 

d. John did not dance with any woman except Mary. 
e. (?)Every man did not dance with any woman except Mary. 

Let us first consider (32a). Every  man  and every w o m a n  do not form a 
constituent. The question therefore is" how can these NPs together be 
evaluated as a single polyadic quantifier? An answer might be found within 
an approach to the syntactic basis of semantic interpretation based on 
Quantifier Raising (QR) at the level of Logical Form (LF). In such an 
approach, quantified NPs such as every man  and every w o m a n  in (32a) 
may (by QR) adjoin to the same syntactic node and thus become 'suffi- 
ciently dose' to be evaluated as a single polyadic quantifier. This has been 
proposed by Higginbotham/May (1981) and, in somewhat different ways, 
by May (1989). In the account of Higginbotham/May (1981), polyadic 
quantification is the semantic correlate of a syntactic operation of what 
they call 'Quantifier Absorption', an operation that takes place at the 
level of LF. This operation, given in (33) applies optionally to a sequence 
of two or more quantified NPs which, having undergone QR, are adjacent 
to each other at LF: 

(33) [QIX: N'(x)] [Q2y: N"(y)] ---~ [Qlx, Qay: N'(x) & N"(y)] 
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In this approach, the LF representation of (32a) is as in (34a) and its 
'logical form' as in (34b): 

(34)a. Every man [every woman [s e danced with e' except John with 
Mary]]. 

b. [every x, every y: man(x) & woman(y)] [except John with Mary] 
x danced with y. 

How does the LF account fare as a general solution to the composi- 
tionality problem for polyadic quantifier formation? Clearly, the LF ac- 
count works well for the case in (32a), but it is more problematic for the 
other examples in (32). Concerning (32b), there is less evidence that 
negative quantifiers undergo QR, since they generally cannot take scope 
over the subject (cf. Beghelli 1992). It is similarly a matter of controversy 
whether quantified adverbs such as always in (32c) undergo QR, since 
they generally take scope in situ (cf. Ladusaw 1988). Finally, it is generally 
not assumed that sentence negation as in (32d) and (32e) undergoes QR. 
Now in the case of (32d), one might argue that any woman, being a 
negative polarity item, has a sufficiently strong syntactic connection to the 
negator not to be interpreted as a negative quantifier together with not. 
But such an assumption would not be of much help in the case of (32e), 
where every man should be interpreted as a binary quantifier together 
with not and any woman. Thus, it appears that unless QR is extended to 
negation and adverbs in rather problematic ways, the compositionality 
problem for polyadic quantifier formation cannot generally be solved at 
LF. 

I suggest an alternative solution to the compositionality problem. As I 
argued in Part I, EPs may apply at a level of implications of what the 
sentence without the EP means. Given this general fact, the interpretation 
of exception sentences with polyadic quantifiers can be seen in a new 
light. Such sentences are first interpreted without the EP in the usual way, 
namely as a proposition p involving ordinary monadic quantifiers as the 
denotations of individual NPs. Then the level of implications comes into 
play, where p will be reformulated as an equivalent proposition p', which 
involves the appropriate polyadic quantifiers. To illustrate this, (32a) first 
will be interpreted without the EP as (35a), which will then be reformu- 
lated as (35b) with a dyadic quantifier: 

(35)a. EVERY(MAN)({x [ EVERY WOMAN({y ] [danced 
with](x, y)})}) 

b. (EVERY MAN, EVERY WOMAN)({(x,y) [ [danced 
withl(x, y)}) 
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(35b) provides the appropriate polyadic quantifier for the EP except John 
with Mary. Analysing the proposition in (35b) into its constituents, i.e. 
the binary quantifier and the predicate, allows the EP to apply to that 
quantifier, and the resulting quantifier will apply to the predicate, yielding 
(([except]([John with Mary]))(EVERY MAN, EVERY WOMAN)) 
([danced with]) as the full meaning of (32a). 

Clearly this procedure would work for all cases in (32). But, this solution 
to the compositionality problem (unless it is subject to further constraints) 
may have scary consequences. For what would happen if generally an 
expression E in a sentence S could be evaluated only at the level of 
implications, that is, by first evaluating S without E, then reformulating 
the resulting meaning p until one gets an appropriate semantic constituent 
o in p for E to apply to, then taking p apart so that one gets o in isolation, 
then applying the denotation of E to o, then again putting the result 
together with the other 'parts' of p, in order to get the full meaning of 
8.934, 35 

6. F U R T H E R  C O N S T R U C T I O N S  OF E X C E P T I O N  P H R A S E S  

A S S O C I A T I N G  WITH P O L Y A D I C  Q U A N T I F I E R S  

6.1. 'Donkey'-sentences 

So far I have discussed exception constructions where the associated poly- 
adic quantifier is denoted by a sequence of ordinary NPs in a sentence. 
As was mentioned in Section 3, there are a number of constructions for 
which a polyadic quantification analysis is plausible or has in fact been 
advocated in the literature. One of them are 'donkey'-sentences such as 
(36a), which have been argued to involve unselective binding. This is 
indicated in (36b), where a quantifier unselectively binds free variables 
that are represented by indefinite NPs (cf. Lewis 1973, Heim 1982, Chier- 
chia 1992): 

34 There is at least one analysis in the semantic literature which is of that type, namely 
Groenendijk/Stokhof (1992)'s analysis of adverbs of quantification in interrogative contexts. 
as Another question about polyadic quantifier formation is: does the linear sequence of 
quantifiers matter, or may quantifiers form a polyadic quantifier with a different scope order 
than their linear order? It appears that the latter is the case. This is seen with the EP 
otherwise in (1), which may associate with the polyadic quantifier (NO, MORE THAN 
THREE): 

(1) John wrote four letters to Mary. Otherwise, John wrote more than three letters 
to no woman. 

Thus, the formation of polyadic quantifiers in the relevant sense may reverse linear order 
and so is not based on the temporal order of information. 
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(36)a. Every farmer who owns a donkey beats it. 
b. [Every x, y: farmer(x) & donkey(y)] beat(x, y) 

If every unselectively binds the free variables represented by a donkey ,  

(36a) will be equivalent to a statement with universal quantification over 
pairs of farmers and donkeys. Hence we expect that EPs apply to such 
unselective quantifiers. This prediction is borne out by examples such as 
(37): 

(37) Every man who came with a woman danced with her except 
John with Mary. 

A theoretically interesting question then arises, namely do examples 
such as (37) support the view that 'donkey'-sentences involve unselective 
binding, rather than an existential quantifier, as in an E-type analysis 
(as recently argued for by Heim 1990) or in Dynamic Predicate Logic 
(Groenendijk/Stokhof 1990)? Not necessarily. The basis for the appli- 
cation of the EP in (37) may be the level of implications, where every 

man and a woman  form a dyadic quantifier, regardless of how a woman  

itself is interpreted. 
Note that in 'donkey'-sentences with conditionals, EPs are much less 

acceptable: 

(38) ??If a student studied with a famous professor, he always learned 
from him except John from Professor X. 

This can be attributed to the fact that generic indefinite NPs generally 
resist EPs: 

(39) ??A dog barks except Fido. 

The explanation for this general fact, presumably, is that generic quantifi- 
ers do allow for exceptions and hence would not satisfy the Homogeneity 
Condition. This is supported by the behavior of NPs with 'free choice 
any'.  Such NPs, given the analysis of Kadmon/Landman (1993), are in- 
definite generic NPs, but with an extended domain so that they may 
disallow exceptions. In fact, NPs with any do allow for EPs: 36 

(40) Any dog barks except Fido. 

36 Note that it is a problem for Kadmon/Landman's (1993) approach why almost is possible 
with free choice any, but not with negative polarity any: 

(1) #Nobody danced with almost any woman. 

In my terms, the question would be why almost can associate with a polyadic quantifier 
formed by an NP with free choice any and the generic operator, but not with the polyadic 
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6.2. Multiple wh-interrogatives 

Another construction that has been argued to involve polyadic quantifi- 
cation are wh-interrogatives with multiple wh-phrases, as in (41a) in the 
reading represented in (41b) (el. Higginbotham/May 1981): 

(41)a. Which man danced with which woman? 
b. For which x, which y [man(x), woman(y)], x danced with y 

As predicted, these wh-constructions allow for EPs with as many terms 
as there are wh-phrases: 

(42) Except for John and Mary, Bill knows which man danced with 
whom. 

Interestingly, also pair-list reading sentences with a non-wh quantified NP 
allow for EPs with several terms: 

(43) Except for John and Mary, Bill knows with whom every man 
danced. 

Given that EPs may operate at the level of implications, again, the possi- 
bility of drawing any theoretical consequences from (42) and (43) is 
blurred. At the level of implications, one may get the appropriate universal 
dyadic quantifiers for (42) and (43) in whatever way embedded interroga- 
tives with multiple wh-phrases and other quantifiers are analysed. The 
possibility of EPs does not necessarily decide between an analysis which 
assigns (43) exactly the same meaning as (42) (cf. Groenendijk/Stokhof 
(1984)), one which allows quantifying into questions (cf. Higginbotham 
1992), or one which reduces (43) to a functional reading of wh-phrases 
(cf. Chierchia 1993). These analyses all assign a meaning to (43) that 
implies the proposition (44), which contains an appropriate dyadic quan- 
tifier for the EP to apply to: 

(44) (([except]((John, Mary)))({R [ EVERY PERSON({x [ EVERY 
MAN({y I R(x, y)})))({(x, y) I Bill knows whether x danced with 

Y}) 

To summarize this part of the paper, we have seen that EPs may apply 
to polyadic quantifiers; and the explanation why this is possible, in all 
cases, may be that EPs operate at a level of implications at which the 
polyadic quantifier is formed. 

quantifier formed by a negative quantifier and an NP with negative polarity any. I do not 
have an answer to that question. 
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7. SUMMARY 

In this paper, I have proposed a compositional semantic analysis of excep- 
tion NPs from which three core properties of exception constructions 
could be derived. I have shown that this analysis overcomes various em- 
pirical and conceptual shortcomings of prior proposals of the semantics of 
exception sentences. The analysis was first formulated for simple exception 
NPs, where the EP-complement was considered a set-denoting term and 
the EP-associate was a monadic quantifier. It was then generalized in two 
steps: first, in order to account for quantified EP-complements, and se- 
cond, in order to account for polyadic quantifiers as the EP-associates. 
An additional assumption that was made in several places was that EPs 
may operate at the level of implications. The consequences of this assump- 
tion, though, still have to be investigated. 

R E F E R E N C E S  

Anderson, S.: 1972, 'How to Get "Even"' ,  Language 48. 
Barwise, J. and R. Cooper: 1981, 'Generalized Quantifiers and Natural Language', Linguis- 

tics and Philosophy 4. 
BegheUi, F.: 1992, 'Minimalist Approach to Quantifier Scope', Proceedings of NELS 23. 

GLSA, University of Massachusetts, Amherst. 
van Benthem, J.: 1989, 'Polyadic Quantification', Linguistics and Philosophy 10. 
Carlson, G.: 1981, 'Amount Relatives', Language 53. 
Chierchia, G.: 1992, 'Anaphora and Dynamic Binding', Linguistics and Philosophy 15. 
Chierchia, G.: 1993, 'Questions with Quantifiers', Natural Language Semantics 1(2). 
Clark, R. and E. Keenan: 1985/6, 'The Absorption Operator', The Linguistic Review 5. 
yon Fintel, K.: 1993, 'Exceptive Constructions', Natural Language Semantics 1. 
Groenendijk, J. and Stokhof, M.: 1984, Studies on the Semantics of Questions and the 

Pragmatics of Answer, Dissertation, University of Amsterdam, Amsterdam. 
Groenendijk, J. and Stokhof, M. : 1991, 'Dynamic Predicate Logic', Linguistics and .Philos- 

ophy 14. 
Groenendijk, J. and Stokhof, M.: 1992, 'A Note on Interrogatives and Adverbs of Quantifi- 

cation', in C. Barker and D. Dowty (eds.), Proceedings of SALTH, Ohio State University, 
Columbus, Ohio. 

Fiengo, R. and H. Lasnik: 1973, 'The Logical Structure of Reciprocal Sentences in English', 
Foundations of Language 8. 

Heim, I.: 1982, The Semantics of Definite and Indefinite Noun Phrases, Ph.D thesis, Univer- 
sity of Massachusetts, Amherst. 

Heim, I.: 1990, 'E-type Pronouns and "Donkey"-Anaphora', Linguistics and Philosophy 13. 
Higginbotham, J. and R. May: 1981, 'Questions, Quantifiers and Crossing', The Linguistic 

Review 1. 
Higginbotham, J.: 1992, 'Either/Or', in T. Sherer (ed.), Preceedings of NELS 21. Graduate 

Student Linguistic Association, University of Massachusetts, Department of Linguistics, 
Amherst. 

Hoeksema, J.: 1987, 'The Logic of Exception', in A. Miller (ed.), Proceedings of ESCOL 
4. The Ohio State University, Columbus, Ohio. 



280 FRIEDERIKE MOLTMANN 

Hoeksema, J.: 1989, 'Exploring Exception Phrases', in L. Torenvliet and M. Stokhof (eds.), 
Proceedings of the Seventh Amsterdam Colloquium, 1TLI, Amsterdam. 

Hoeksema, J.: 1991, 'The Semantics of Exception Phrases', in J. van der Does and J. van 
Eijck (eds.), Generalized Quantifier Theory and Applications, Dutch Network for Lan- 
guage, Logic and Information, Amsterdam. 

Kadmon, N. and F. Landman: 1993, 'Any', Linguistics and Philosophy 16. 
Karttunen, L.: 1977, 'The Syntax and Semantics of Questions', Linguistics and Philosophy 

1. 
Keenan, E.: 1987a, 'Unreducible n-ary Quantifiers', in P. Gaerdenfors (ed.), Generalized 

Quantifiers: Linguistic and Logical Approaches, Dordrecht, Reidel. 
Keenan, E.: 1987b, 'On the Semantic Definition of Indefinite NP', in A. ter Meulen and E. 

Reuland (eds.), The (In)Definiteness Effect, MIT Press, Cambridge (Mass.). 
Keenan, E.: 1992, 'Beyond the Frege Boundary', Linguistics and Philosophy 15. 
Keenan, E. and Faltz: 1985, Boolean Semantics, Kluwer, Dordrecht. 
Keenan, E. and Y. Stavi: 1986, 'A Semantic Characterization of Natural Language Deter- 

miners', Linguistics and Philosophy 9. 
Krifka, M.: 1992, 'Definite NPs Aren't Qnantifiers', Linguistic Inquiry 23. 
Ladusaw, W.: 1988, 'Adverbs, Negation and QR', Linguistics in the Morning Calm 2, The 

Linguistics Society of Korea, Hanshin Publ. Co. 
Lewis, D.: 1975, 'Adverbs of Quantification', in E. L. Keenan (ed.), Formal Semantics of 

Natural Language, Cambridge University Press, Cambridge. 
Link, G.: 1983, 'The Logical Analysis of Plurals and Mass Terms: A Lattice-Theoretical 

Approach', in R. Baeuerle et al. (eds.), Meaning, Use and the Interpretation of Language, 
de Gruyter, Berlin. 

May, R.: 1985, Logical Form, Its Structure and Derivation, MIT Press, Cambridge, Mass. 
May, R.: 1989, 'Interpreting Logical Form', Linguistics and Philosophy 12. 
Moltmann, F.: 1992a, Coordination and Comparatives, Ph.D Thesis MIT, Cambridge, Mass. 
Moltmann, F.: 1992b, Individuation und Lokalittit, Studien zur Ereignis- und Nominalphra- 

sensemantik, Fink Verlag, Munich. 
Moltmann, F.: (to appear a), 'Resumptive Quantifiers in Exception Sentences', Makoto 

Kanazawa et al. (eds.), Quanttfiers, Deduction, and Context, CSLI Lecture Notes, Chicago 
University Press. 

Moltmann, F.: (to appear b), Parts and Wholes in Semantics, Oxford University Press. 
Nam, S." 1991, 'N-ary Quantifiers and the Expressive Power of NP-Composition', in J. van 

der Does and J. van Eijck (eds.), Generalized Quantifier Theory and Applications, Dutch 
Network for Language, Logic and Information, Amsterdam. 

Reinhart, T.: 1991, 'Elliptical Conjunction - Non-quantificational QR', in A. Kasher (ed.), 
The Chomskian Turn, Basil Blackwell, Cambridge, Massachussetts. 

Rooth, M.: 1985, Association with Focus, Ph.D thesis, University of Massachusetts, Amherst. 
Srivastav, V.: 1991, Wh-Dependencies in Hindi and the Theory of Grammar, Ph.D thesis, 

CorneU University, Ithaca, New York. 
Veltman, F.: 1984, 'Data Semantics', in J. Groenendijk et al. (eds.), Truth, Interpretation 

and Information, Foris, Amsterdam. 
Veltman, F.: 1986, Logics for Conditionals, Dissertation, University of Amsterdam, Amster- 

dam. 
Westerstahl, D.: 1989, 'Quantifiers in Formal and Natural Language', in D. Gabbay and H. 

Guenthner (eds.), Handbook of Philosophical Logic, Vol. IV, Reidel, Dordrecht. 

C U N Y ,  Graduate Center 

Depar tment  o f  Phi losophy 
33 West 42nd Street 
New York, N Y  10036-8099 
U.S.A. 


